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Abstract

The coupled evolution of an eroding cylinder immersed in a fluid within the subcritical Reynolds range is explored
with scale resolving simulations. Erosion of the cylinder is driven by fluid shear stress. Kármán vortex shedding
features in the wake and these oscillations occur on a significantly smaller time scale compared to the slowly eroding
cylinder boundary. Temporal and spatial averaging across the cylinder span allows mean wall statistics such as wall
shear to be evaluated; with geometry evolving in 2-D and the flow field simulated in 3-D. The cylinder develops into
a rounded triangular body with uniform wall shear stress which is in agreement with existing theory and experiments.
We introduce a node shuffle algorithm to reposition nodes around the cylinder boundary with a uniform distribution
such that the mesh quality is preserved under high boundary deformation. A cylinder is then modelled within an
infinite array of other cylinders by simulating a repeating unit cell and their profile evolution is studied. A similar
terminal form is discovered for large cylinder spacings with consistent flow conditions and an intermediate profile
was found with a closely packed lattice before reaching the common terminal form.

Keywords: Fluid-structure interaction, Cylinder lattice, Subcritical flow regime, DES, Scale resolving simulations

1. Introduction

Erosion due to flowing fluid occurs in a wide range of contexts. Wind erosion sculpt rocks, forming natural arches
and other shapes dependent on the surrounding topology and rock properties. Yardangs are streamlined erosional
wind forms (Ward, 1979; Ward and Greeley, 1984) whereas hoodoos are columns, pillars and toadstool rock forms
(Scheidegger, 1958; Wang, 2005). These eroded rock formations affect the surrounding wind patterns which conse-
quently influence the rock formations (Ward and Greeley, 1984; Scheidegger, 1958). Another example of this coupled
effect between a fluid and solid body is river meanders (Leopold and Wolman, 1960); the naturally occurring curved
paths of rivers. Simulations of streams with an initially straight channel have developed into these meandering pat-
terns (Howard and Knutson, 1984). Erosion also features in biology with blood flows through arteries where plaque
erosion and plaque rupture can be fatal (Farb et al., 1996). Ruptures often occur in regions of high wall shear stress
τw upstream of the plaque (Groen et al., 2007). In this paper we examine the time evolution of an initially circular
cylinder with both laminar and turbulent upstream conditions in high speed unidirectional flow (Reynolds number
Re = 27 000) using numerical simulations. We find that the cylinder tends to a terminal form and then erodes self-
similarly as found in experiments (Ristroph et al., 2012); dependent on the upstream conditions but independent of
the initial or transitional shape.

Two modelling approaches exist for simulating the interface between phases: Eulerian (captures the boundary)
and Lagrangian (tracks the boundary). The Eulerian approach is based on the immersed boundary method where the
fluid and structure interaction (FSI) is modelled with the fictitious domains method and has been applied for cylinders
in Stokes flow (Re ≪ 1, quasi steady flow) (Golay et al., 2011). However, this approach has difficulty in accurately
modelling the fluid properties at the interface such as τw. The Lagrangian approach involves exclusively simulating
the fluid phase and remeshing the computational domain as the interface deforms. This remeshing allows the standard
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meshing procedures for resolving near-wall velocity gradients to accurately capture surface features such as τw: either
directly resolving the viscous sublayer or using wall treatment models. Recently, Mercier et al. (2014) have simulated
erosion of soil from a turbulent jet using a 2-D axisymmetric model. They treated the flow as steady and used the k− ϵ
and k − ω Reynolds averaged Navier-Stokes (RANS) turbulence models. However, remeshing is a computationally
expensive task and their run times were one month with a cluster of 8 CPUs. We have used the Lagrangian approach
because τw was selected as the driving mechanism of erosion and a highly resolved mesh near the boundary was
sought to accurately simulate τw at this moderate Re.

We simulated the erosion of a circular cylinder in the subcritical flow regime at Re = 27 000 with two types of
configurations with particular attention to the fluid structure coupling. First, we simulated a single cylinder to validate
our model against theory (Moore et al., 2013) assuming a laminar approximation and then against an experiment
(Ristroph et al., 2012) using scale resolving simulations. Second, we investigated a lattice of cylinders which are
sparsely separated and then a closely packed lattice where the flow transitions from shear layer reattachment (closely
packed) to vortex shedding (smaller eroded cylinders with large spacings). There are no previous studies on simulating
the erosion of a cylinder with unsteady turbulence in literature to the best of our knowledge, and nor dynamic meshing
with a boundary deforming over such a significant change in curvature and scale.

2. Methods

2.1. Geometry and flow conditions
Flow over a cylinder was simulated with the same conditions as an experiment by Ristroph et al. (2012) to validate

our model against, and a cylinder within a lattice of cylinders was also modelled. The cylinder eroded as a function
of the local wall shear stress τw. The cylinder had an initial radius, a0 = 18 mm, giving a Reynolds number, Re =
2u∞a0/ν = 27 000 where u∞ = 0.61 m/s is the freestream velocity and ν = 8 × 10−7 m2/s the kinematic viscosity of
water. This Re = 27 000 is within the subcritical flow regime for a cylinder in cross flow where the wake is completely
turbulent and there is a laminar boundary layer separation point on the top and bottom of the cylinder (Sumer and
Fredsøe, 2006). Re scales linearly with a and typically reduces by a factor of four in our simulations and remains in
this subcritical flow regime.

The Strouhal number is defined as

St =
2 fva
u∞

(1)

where fv is the vortex shedding frequency and is the inverse of the vortex period Tv = 1/ fv. The effective cylinder
radius is time-dependent a = a(t), reduces as the cylinder erodes and 2a is defined as the width of the cylinder (normal
to flow). This characteristic length scale 2a controls the flow field behaviour including shedding vortex properties and
Reynolds number.

Based on Prandtl boundary layer theory, the cross sectional area A of the eroding body follows a 4/3 power law
in time t (Moore et al., 2013) with

A(t) ∼ A0

(
1 − t

tend

)4/3

(2)

where A0 is the initial area and tend the vanishing time of the body. The simulations were unable to reach tend (where
no material remained). Instead, a simulation-dependent final time t f is defined where t f < tend. The shear stress can
be estimated as

τ∗ = ρ

√
νu3∞

a
(3)

where ρ = 998.2 kg/m3 is the density of the fluid (water, as per the experiment). The τ∗0 is a fixed characteristic stress
and was used for non-dimensionalising.

Drag and lift coefficients were calculated as the total surface integral of the pressure and skin friction on the body.
The projected areas, normal (for drag) and parallel (for lift) to the flow, are time-dependent and therefore these values
were calculated for each mesh update.
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(a) (b)

Figure 1: Side view of meshes with flow from left to right for the (a) single cylinder and (b) repeating unit cell configuration (L/2a0 = 4). All cases
had a0 = 18 mm and a refined O-grid mesh around the cylinder.

The root mean square intensities of fluctuations in τw are greatest around the separation point (Yokuda and
Ramaprian, 1990). This separation point θsep is where the τw vanishes as the boundary layer separates from the
wall (Achenbach, 1968).

2.1.1. Single cylinder
A curvilinear O-type orthogonal grid was used with 50× 100 (radial × circumferential) cells in the cross sectional

plane as shown in Figure 1a. Mesh nodes were clustered near the cylinder with ∆r/a0 = 4 × 10−3 for the first cell
height giving y+max ≈ 4 throughout the simulations including the deformed mesh of the eroded cylinder. One spanwise
cell was used to simulate the laminar 2-D case and 32 spanwise cells were used for the unsteady 3-D cases; this
resolution of the spanwise flow features was indistinguishable compared with a 64 cell deep grid. The spanwise
length was 8a0 which is adequate to accurately simulate the time-averaged statistics, as reasoned by Lysenko et al.
(2014). The O-grid had an outer radius of 10a0 for the single cylinder cases giving 5 × 103 cells in 2-D and 1.6 × 105

cells in 3-D.
A laminar, uniform inlet speed of u∞ was applied on the upstream side and an outflow boundary condition was

applied on the downstream side to handle the vortices leaving the domain (non-constant pressure distributions across
the vortices). Periodic boundaries were applied on the sides (parallel to flow) to allow vortices to translate across the
span of the cylinder (unsteady turbulence does not have instantaneous symmetry). A no-slip wall was applied to the
cylinder boundary.

2.1.2. Lattice of cylinders
Three common types of cylinder arrangements are tandem (cylinders aligned in streamwise direction), side-by-

side (perpendicular to flow) and staggered (often used in heat exchangers). Experiments, and more recently scale
resolving simulations to capture the vortex shedding, have been undertaken with these simple configurations and few
papers exist to compare results for the staggered case (Sumner, 2010). A lattice of cylinders is a structured array of
cylinders which are equally spaced with longitudinal L (parallel to flow) and transverse T (normal to flow) centre to
centre distances. This lattice is a combination of tandem and side-by-side configurations and we used a uniform grid
with T = L.

The lattice of cylinders were modelled using a repeating unit cell of one cylinder; the two arrangements explored
are shown in Figure 2. This computational domain is significantly smaller than modelling a finite number of cylinders;
for example, three tandem cylinders where the surroundings and especially the wake and near-wall regions of the
cylinders need to be accurately resolved. The bounding box of the unit cell controls the spacings T and L; altering these
spacings gives disparate flow fields for equal Re. Two basic types of interferences contribute to the fluid behaviour
(Zdravkovich, 1987), namely: wake interference (downstream cylinders are either partially or completely within the
wake of the upstream cylinder) and proximity interference (cylinders are sufficiently close to affect one another,
typically side-by-side, but neither is submerged in the wake of the other). Several flow patterns exist for two tandem
cylinders (Igarashi, 1981), and a simplified classification scheme (Sumner, 2010) can be described as:
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(a)

Cylinder boundaries
Repeating unit cell

(b)

Figure 2: Lattice of cylinders are shown for both the (a) sparsely spaced (L/2a0 = 8) and (b) closely packed (L/2a0 = 4) configurations with their
respective repeating computational unit cells used in the simulations with periodic boundary conditions.

• extended-body regime: small pitch ratios of 1 < L/l < 1.2− 1.8 behave as a single bluff body. The downstream
cylinder lies within the vortex formation region of the upstream cylinder. The gap between the cylinders contain
mostly stagnant fluid.

• reattachment regime: intermediate pitch ratios of 1.2 − 1.8 < L/l < 3.4 − 3.8 have shear layer reattachment
between the cylinders. Eddies can form between the cylinders and gap dynamics widely vary.

• co-shedding regime: large pitch ratios of L/l > 3.4 − 3.8 have vortex shedding between the cylinders. The
downstream cylinder is outside the vortex formation region of the other cylinder and experiences periodic
impacts from the shed vortices.

where l is the maximum length of the cylinder in the streamwise direction (l0 = 2a0 and l ≈ 2a when the aspect ratio
2a/l is near unity). All pitch ratio ranges are approximate, depend on Re and the above values are from Zdravkovich
(1987) with similar flow conditions to our case (subcritical flow regime). Kármán vortex shedding occurs downstream
of both cylinders for all cylinder spacings presented in this paper.

We first modelled a sparsely spaced lattice analogous to the tandem configuration of two cylinders with L/l0 = 4.
Cylinders with a transverse spacing of T/2a0 = 4 reside outside the proximity interference region (Sumner, 2010)
and therefore the upstream flow from each cylinder is dictated by the shedding vortices from the preceding cylinder.
A critical pitch ratio L/l = 4.05 at Re = 7000 and L/l = 3.47 at Re = 27 000 (Ljungkrona and Sundén, 1993) exists
where the flow between the gap alternates between the reattachment and co-shedding regimes. This lattice avoids this
bistable flow by having a spacing above the critical ratio throughout the erosion process; Re decreases with the eroding
cylinder (Re f ≈ 7000) but the pitch ratio increases at a similar rate (L/l f ≈ 16). Our second lattice configuration had a
closer packing with L/l0 = 2 which transitioned from the complex reattachment regime, with proximity interference,
to the co-shedding regime without proximity interference as the cylinder eroded.

A similar O-type grid was used around the cylinder with 20×100 cells with an outer radius of 4a0/3. The accuracy
of this case was retained from the validation case by preserving the first cell height, spanwise length and number of
spanwise cells. The surrounding block was filled with unstructured tetrahedral cells yielding a total of 2.8 × 105 and
1.2 × 105 cells for the large spacing and closely packed cases respectively. The mesh was recreated twice during the
course of the simulation for the close packed case: first at t/t f = 0.68 (two thirds through the simulation) and again
at t/t f = 0.95 (near the end of the simulation but not tend). The remeshing procedure was employed to maintain a
similar grid resolution throughout the simulation with a significant increase in fluid volume ratio (no additional cells
were normally created as described in Section 2.6). The O-grid had the same thickness and radial distribution of cells
to retain the y+max values.

Periodic boundary conditions were applied to all sides of the bounding cuboid and a specified mass flow rate
was applied in the streamwise direction to attain the correct Re (using 5 sub-iterations to determine the pressure
gradient for the desired mass flow rate). A phase lag of fluctuating lift forces between two tandem cylinders exists at
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Re = 65 000 (Alam et al., 2003). However we have assumed a zero phase lag by forcing synchronised vortex shedding
across the lattice using a repeating unit cell. A no-slip wall was applied to the cylinder boundary.

2.2. Numerical methods

ANSYS Fluent R17.0 was used as the solver and MATLAB R2016a for data analysis. Simulations were run on a
standard desktop computer with an Intel Core i7-6700 CPU. Fluent was run in serial mode for the 2-D cases and in
parallel mode for the 3-D cases. Production runs with unsteady 3-D simulations of a single cylinder took 20 hours to
complete and 65 hours for the lattice cases.

The iterative time advancement scheme with the SIMPLEC segregated solver was used with under-relaxation
factors set at unity to improve iterative convergence. Absolute residuals of 1 × 10−4 were set as the convergence
criteria for each time step; giving ≈ 25 inner iterations. The bounded second order implicit transient formulation was
employed with an initial time step ∆t̃0 = 50 ms. Second order for pressure and third order MUSCL for momentum,
turbulent kinetic energy and specific dissipation rate was used for the spatial discretisation. High order schemes and
the iterative (instead of non-iterative) time advancement scheme were chosen as these settings yielded the best results
with the coarse time step and grid.

2.3. Viscous models

The flow was first approximated with a steady laminar viscous model in 2-D. Shear in the wake was ignored in
accordance with Moore et al. (2013) by setting τw = 0 where the circumferential angle from the stagnation point θ >
θsep for calculating the eroding normal speed vn. The flow field upstream of the cylinder is laminar, however, unsteady
turbulence occurs in the wake downstream. This assumption of neglecting the erosion in the wake is reasonable for
an approximation, because this region had the lowest erosion rate observed in experiments (Ristroph et al., 2012).

Scale resolving turbulence models, such as large eddy simulations (LES), can resolve the turbulent structures in the
wake behind the cylinder. Few studies exist using LES for the flow over a cylinder within the subcritical flow regime.
Lysenko et al. (2014) have recently investigated using various subgrid scale models at Re = 20 000 and compared
their results to experiments and simulations. They used a mesh size of 440 × 440 × 32 (radial × circumferential ×
spanwise), a total of 1.24 × 107 cell volumes, taking a cluster of 256 cores in parallel approximately 60 hours for each
run. In theory, a slightly more refined mesh would be required at our higher Re = 27 000 to capture the boundary
layer with the same resolution; because the boundary layer thickness (Schlichting and Gersten, 1999) behaves like
δ ≈ r/

√
Re where r is the radial coordinate. Furthermore, the simulation time step ∆t̃ would need to be refined to have

a matching Courant number.
This issue of long computational times for accurate simulations is also apparent for arrays of cylinders. The wake,

and subsequently the upstream region due to the periodicity, should have a fine grid to capture the vortex structures
and accurately simulate τw. Uzun and Hussaini (2012) have simulated two tandem cylinders with detached eddy
simulations (DES) at a critical spacing of L/l = 3.7 and Re = 166 000 giving a bistable flow regime which alternates
between reattachment and vortex shedding. Their finest mesh had 133 million grid points taking 23 days using 816
cores in parallel. Primary vortex periods were highly resolved with 2899 time steps; whereas our simulations had
seven time steps per vortex period. However, their coarser grids yield similar results and our time and mesh resolution
was chosen as the coarsest settings while still adequately resolving τw.

The unsteady flow field changes over time due to the fluid-structure interaction with the eroding cylinder. Flow
features, and consequently the shear forces acting on the cylinder, constantly change over the evolution of the erosion
process. Developing the flow field and extracting the relevant flow characteristics at every discrete mesh update,
considering the above computational times, would be impractical. Instead, we have applied a pragmatic approach
whereby the distribution of τw (the key parameter that influenced the erosion rate) was first verified against the case
of a rigid (non-deforming) circular cylinder in cross-flow in the subcritical flow regime. Second, the evolution of the
cylinder profile was validated against the experimental results of Ristroph et al. (2012). The mesh was considered
adequate if τw was verified (with particular attention to the separation point θsep) and the cylinder evolution matched
the experiment. An independence study on both the temporal and spatial discretisation was carried out and the τw

profile of the converged grid is compared with that of the coarse mesh and experimental data in Figure 11.
DES are composed of LES and RANS models to help mitigate the challenge of impractical computational costs

for high Reynolds number separated flows (Spalart et al., 1997). The separation point is sensitive to the accuracy of
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modelling the transition from laminar to turbulence; shielded DES and delayed DES (Menter and Kuntz, 2004; Spalart
et al., 2006) employ a DES scale limiter which is solution dependent (not only grid dependent). We used the improved
delayed DES turbulence model (Shur et al., 2008), designed for simulating wall boundary layers at moderate Re with
LES, with the SST k − ω RANS model in Fluent.

2.4. Erosion

The cylinder from the experiment (Ristroph et al., 2012) eroded and was observed for t f = 115 min and reduces
to approximately a third of its initial width, with an estimated vanishing time of tend = 140 ± 2 min. The cylinder
boundary eroded at a normal speed of vn ≈ 1 cm/h which is very slow compared to the freestream velocity, giving a
ratio of vn/u∞ ≈ 5 × 10−6. Therefore the movement of the receding cylinder wall has an insignificant effect on the
momentum of the surrounding flow.

The eroded material would act as sort of a sand blaster downstream of the cylinders and have an effect in the lattice
arrangements. These new particles may alter the flow properties and influence the separation of the laminar boundary
layers and the vortex shedding. We assumed the eroded material had a negligible impact on the flow physics because
of its low volume fraction, considering the small ratio of vn/u∞ ≈ 5 × 10−6.

Clay was used as the material for the cylinder in the experiment and erodes such that vn ∝ |τw| (Ristroph et al.,
2012), the wall shear stress magnitude; from now |τw| is written as τw for simplification. The dimensionless normal
erosion velocity can be written based on the formulation of Moore et al. (2013) as

vn =

⎛⎜⎜⎜⎜⎝τw

τ∗0
+ ϵ

√
L
L0

(κ − κmean)
κ0

⎞⎟⎟⎟⎟⎠ n̂ (4)

where ϵ is the curvature factor, L =
∑

si the total arc length of all arc segments si, κ the local curvature and n̂ the unit
normal outwards from the fluid domain. The first term on the right hand side is erosion from shear stress vτ and the
second term is from the curvature correction vκ.

Erosion of the cylinder was driven by vτ, whereas vκ was used to smooth the sharp edges (for example at stagnation
points where τw = 0 Pa) with an effective weighting of ϵ. The

√
L factor was used to scale the influence of smoothing

with τw as the body vanishes as predicted by Equation 3. The mean curvature κmean was subtracted from κ to conserve
the mass such that material loss was only due to the action of shear stress (Moore et al., 2013). These variables are
divided by initial values L0 and κ0 to obtain the non-dimensionalised Equation 4.

Menger (1930) introduced a definition of curvature for three discrete points by fitting a circle through these points.
This Menger curvature was used to calculate the local curvature at nodes (xi) about its nearest two neighbours (xi−1
and xi+1) in the circumferential direction with

κ(xi−1, xi, xi+1) =
√

(xi−1xi + xixi+1 + xi−1xi+1)(xi−1xi + xixi+1 − xi−1xi+1)(xi−1xi − xixi+1 + xi−1xi+1)(−xi−1xi + xixi+1 + xi−1xi+1)
xi−1xi · xixi+1 · xi−1xi+1

(5)

The nodes on the cylinder boundary were displaced on a separate time scale than the fluid with

∆x = ηa0vn (6)

where η is the erosion factor and |vn| is of order unity. The inverse 1/η provides a rough estimate of the number of
mesh updates Nend required for the cylinder to vanish. The product of these variables Nendη provides a quantitative
metric to compare the rate of erosion for the cases.

2.5. Spatial and temporal averaging

Two distinct timescales were observed in the experiment: (1) the fluid with several vortex shedding cycles per
second; (2) eroding boundary motion across a couple of hours. We assumed the unsteady 3-D flow features across the
cylinder would average across the span of the cylinder after many vortex cycles; this dependence of only vn = vn(θ, t)
was observed in the experiments with a 2-D shape evolution in the axial direction of the cylinder (Ristroph et al.,
2012).
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Figure 3: Repeating time periods of developed and developing blocks after the initial flow field has been established. Three sets of blocks are
shown here; typical simulation runs had over 600 sets of developed and developing blocks.
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Figure 4: Wall shear stress distribution of the cylinder across compute nodes at an instance in time. The ring, averageRing, contains the mean of
each angle across all spanwise boundary faces.

The 3-D computational domain was still required because the vortices have 3-D effects including unsynchronised
vortex shedding across the cylinder causing out of phase hydrodynamic forces which are smaller when compared to a
2-D flow assumption. The τw was averaged across the span of the cylinder and a constant cross section was maintained
(2-D shape evolution). Far fewer vortex periods were required to converge mean transient statistics compared to ob-
serving a single slice because of collecting this data across 32 spanwise cells instead of one cell; providing effectively
as many vortex periods for a simulation time of Tv.

The flow field was first initialised and developed without effects of erosion; shown as the first time block in
Figure 3 from t0 to t1. In practice, the developed 3-D flow was saved and then new runs were initialised with this
solution; requiring fewer time steps per run for the first time block in subsequent simulations. The time-averaged
wall shear stress of each boundary face was stored in memory and was reset at each new time block. Mesh updates
occured at the end of each developed block t2, t4, t6... after the time-averaged τw was no longer changing over time.
Developing blocks allowed the flow to redevelop after each mesh deformation; the solver was generally well-behaved
where residuals spiked across only one time step. The dynamic mesh model in Fluent requires a first order time
discretisation and this setting was returned to the bounded second order scheme on the time step following each mesh
update.

An array variable, averageRing, contained averaged values for each face angle of the structured grid as shown
in Figure 4. Each compute node had its own averageRing, and node0 received and averaged across all faces using
message passing macros. A primaryRing array of the first ring on node0 enabled monitoring of a slice of the
cylinder. Lastly, the nodeRing array contained the locations and details of all nodes on the cylinder wall boundary:
made possible by assuming that the geometry morphs only in 2-D. Partitions were aligned parallel with the flow to
reduce the influence of interpartition approximations (as only one finite volume cell overlapped between partitions).
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Figure 5: (a) Evolution of the cylinder boundary without the node shuffle algorithm. Nodes have clustered near the stagnation point due to the high
curvature change. (b) Close-up featuring the node triplet nearest to the stagnation point at t = t f . The active shuffle node (x2, y2) is surrounded by
its left (x3, y3) and right (x1, y1) neighbours. The circle intersects all three nodes and has its centroid at (xc, yc).

2.6. Dynamic meshing

The mesh naturally bunched and eventually caused overlapping nodes in the initial trial simulations as shown in
Figure 5a; particularly near the stagnation point. Forcing the node trajectories along constant θ with the geometric
centroid improved mesh quality; but the mesh distribution became non-uniform (θi was uniform although si was not).
Ultimately a node shuffle algorithm, detailed in Section 2.7, was designed to elegantly deform the cylinder boundary
nodes without losing mesh quality.

Diffusion-based smoothing was chosen as the method for displacing the interior nodes using the dynamic mesh
model in Fluent. This mesh motion was governed by the diffusion equation

∇ · (γ∇m) = 0 (7)

where γ is the diffusion coefficient and m the mesh displacement velocity. This equation was discretised using the
standard finite volume method and the algebraic multigrid solver was used to iteratively solve the generated matrix.
Node positions were then updated by interpolating this cell centred solution.

A boundary distance formulation was selected with γ = 1/bβ where b is the normalised boundary and β is a
parameter such that β ⩾ 0. Setting β = 0 gives γ = 1 such that the interior of the mesh diffuses uniformly, whereas
a higher value of β reduces the relative node displacement of the mesh near the moving boundary (and the far field
absorbs the deformation). Therefore a relatively high β = 2 was chosen to preserve the grid resolution across the
boundary layer: the critical region to accurately simulate the τw profile.

Fluent is a cell centred finite volume solver and therefore all field variables are stored at the centroid of each cell
and face. These variables, including wall shear stress and pressure, were stored in averageRing and primaryRing

whereas the geometric values, including profile coordinates and curvature, were stored in nodeRing. The boundary
was deformed by displacing the nodes which required interpolation of the face values onto the nodes. A high order
interpolation method was sought to capture the local vτ component. Catmull-Rom splines (Catmull and Rom, 1974)
have C1 continuity, local control and interpolation; and were employed to interpolate at nodes from the nearest four
faces in the circumferential direction.

The faces and nodes in their respective arrays were ordered according to θ which was relative to the current
geometric centroid. The centroid receded as the cylinder eroded and the profile deformed; the centroid position was
calculated at each mesh update. N nodes, with coordinates (xi, yi)N

i=1, formed a closed polygon around the cylinder in
the plane normal to the cylinder axis. The signed area of this polygon is

A =
1
2

N∑
i=1

(xiyi+1 − xi+1yi) (8)
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and its centroid is given by

(xcentroid, ycentroid) =
1

6A

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi),
N∑

i=1

(yi + yi+1)(xiyi+1 − xi+1yi)

⎞⎟⎟⎟⎟⎟⎠ (9)

Oscillating ripples formed across nodes in regions of highest curvature and profile changes; a result of overcom-
pensating curvature from the vκ term. One solution for this problem was reducing η to have smaller node displacements
at each mesh update, however this method linearly increases the computational effort. A second solution was to use
an exponential smoothing factor in time

vn = αvn,t + (1 − α)vn,t−1 (10)

where α is the smoothing factor and 0 < α < 1. Applying α = 0.75 dampened the fluctuating ripples while still
allowing the profile evolution to respond to local transient dynamics. This solution was implemented with the same η
and thus no additional intermediate mesh updates were required, resulting in a stable solution without increasing the
computational effort.

St remains relatively uniform across a wide range of Re in the subcritical flow regime (Schewe, 1983), especially
within the Reynolds range of our simulations (Son and Hanratty, 1969; Norberg, 2003): reducing from Re = 27 000
to Re ≈ 7000 as the cylinder cross section reduces from a = a0 to a/a0 ≈ 0.25 (both in the experiment and for our
simulations). Similarly, St is directly proportional to a as shown in Equation 1, therefore Tv scales linearly with a. A
transient time step was used to retain the same resolution of the vortex oscillations throughout the cylinder evolution
with

∆t̃ =
a
a0
∆t̃0 (11)

where ∆t̃0 is the initial simulation time step. This time step was modified after each mesh update and is separate from
the time scale t used for describing the erosion rate.

2.7. Node shuffle algorithm

A uniform distribution of nodes around the cylinder boundary was used for the initial mesh and was desired
throughout the simulation. However, nodes tended to bunch in regions of high curvature deformation as shown in
Figure 5a. This phenomenon ultimately led to pinching of the mesh where nodes overlapped causing negative (non-
physical) cell volumes.

We have designed an algorithm to uniformly distribute the nodes around an arbitrary profile described by its nodes.
One aim was to preserve the mesh quality as the cylinder evolved from the initial circle to its terminal form without
reordering the nodes. Nodes are shuffled in an iterative fashion and the local curvature of each node is conserved (to
avoid artificially altering the curvature). Subsequently, a second aim of preserving the global profile was achieved
(Figure 6a). Lastly, a third aim was to position a node at the stagnation point to help capture the highest curvature
which was found at the leading edge (Figure 6b).

Each iteration cycles through all nodes starting at the lead node (nearest to the stagnation point) and continues in
a clockwise direction; this process is illustrated with a video available in the supplementary material. A node triplet is
defined for each node as well as a circle, with radius rc, which intersects the nodes as shown in Figure 5b. The active
shuffle node moves either left or right along the circle arc to decrease or increase the left hand arc length (s1−2). The
target arc length is starget = smean except for the lead node which always tends to θ = 0◦. The shuffled arc length is
restricted along the circle arc such that

(0.5 − ξ)s1−3 ⩽ sshuffled ⩽ (0.5 + ξ)s1−3 (12)

where ξ is the shuffling factor (0 < ξ < 0.5) and s1−3 the arc length between the neighbouring nodes. Nodes are
shuffled slowly around the cylinder with a low value of ξ; yielding a greater accuracy when compared to using a
high ξ. We used ξ = 0.05 in our simulations to ensure the cylinder profile was preserved accurately. Typically, two
iterations were sufficient for converging the uniformity of the nodes at each mesh update. A lower ξ was chosen
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Figure 6: Comparison of the cylinder boundary before and after the node shuffling. (a) The cylinder outline of both meshes shows that the profile
was preserved throughout the shuffling process. (b) Close-up where the centre node is anchored at the stagnation point (θ = 0◦). The shuffled mesh
has uniform arc lengths between each node.
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Figure 7: Normalised arc lengths around the cylinder starting from an initial mesh where the arc length ratio smax/smin = 3.31. The initial mesh
was generated in the absence of the node shuffling algorithm. Each arc length s gradually tended toward smean as the nodes propagated around the
cylinder. ξ = 0.025 yielded smax/smin = 1 after 34 iterations with a shuffled perimeter error of 0.02 %.

for shuffling nodes around a poor mesh (Figure 7) to highlight the gradual movement of nodes around the cylinder
boundary.

A key advantage of anchoring a node is that the cells do not rotate around the cylinder causing the mesh to skew.
Anchoring the lead node at the stagnation point encourages a consistent (but evolving) shape as the leading edge
propagates due to erosion. Having similar node angles on the cylinder boundary throughout mesh updates enhances
the stability of the solver by reducing the change in field variables. Therefore, the computational domain did not
require initialising after each mesh deformation.

Figure 7 shows how the nodes are shuffled from left to right (direction of increasing θ; clockwise) throughout the
iterations. Cell faces with s/smean , 1 gradually tend to unity. The spike at the lead node is caused by the slack from
the node shuffles during an iteration; the lead node is anchored at θ = 0◦ (after reaching this position).

3. Results

Four distinct cases are investigated in this paper with two viscous models, 2-D or 3-D, steady or unsteady and
type of cylinder configuration. First, a 2-D steady laminar model of a single cylinder is analysed and compared with
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Figure 8: Erosion of a clay cylinder in water (flow is from left to right) assuming steady laminar conditions in 2-D. The coloured lines show the
evolution of the cylinder profile where boundary nodes are represented with points. The erosion factor η = 1.4 × 10−3 and 1100 mesh updates
were performed (every 50th is shown here). The solid grey lines are from a Prandtl-based method (Moore et al., 2013) where the profiles are on a
separate time scale, are linearly spaced in time and extend beyond t f by 4.2 %.

a Prandtl-based method. Next, a 3-D unsteady DES model of a single cylinder is validated against experimental data.
Lastly, two cases are simulated with 3-D unsteady DES models and are of a sparsely spaced, and then closely packed,
lattice of cylinders.

3.1. Steady laminar approximation

We started with simulating steady laminar flow to help verify our model. A weighting of ϵ = 0.1 for the curvature
component gave shape deformation changes similar to that found from the Prandtl-based method. The characteristic
shear stress was τ∗0 = 3.17 Pa.

The cylinder eroded over time and approached a terminal form as shown in Figure 8 due to the changing velocity
field. The cylinder eroded fastest at the areas of highest wall shear stress (θ = ±45◦), tending towards a rounded
triangular shape (pointed upstream) from t/t f ≈ 0.3. The cylinder then continued eroding at a similar rate across
the upwind side causing a self-similar evolution which matched closely with the model (Moore et al., 2013) and
experiments (Ristroph et al., 2012).

The deforming mesh behaved well when using the shuffling algorithm and anchoring the node at the stagnation
point as confirmed when comparing the grey (solution of Moore et al. (2013)) and coloured dotted contours (our
simulation) in Figure 8. By comparison, the mesh distorted and collapsed at t/t f = 0.75 with anchoring a node at
θ ≈ −180◦ (in the wake region), and broke down at t/t f = 0.25 without the shuffling algorithm entirely. Enhancing the
robustness of the mesh deformation allowed us to simulate the erosion of the cylinder from the initial circular shape
up to near its vanishing point without manually remeshing the geometry several times.

A uniform wall shear stress distribution on the upwind side of the cylinder was obtained as the cylinder reached
its terminal form as shown in Figure 9. The Falkner-Skan similarity solutions for flow over a wedge suggest that
a right angled nose exhibits a uniform wall shear stress across the surface (Moore et al., 2013). The shear stress
was symmetric about the stagnation point because the flow was treated as steady; vortices were not able to develop,
which would in turn produce oscillatory forces. The shear force on the downstream side of the cylinder was ignored
because a laminar viscous model was used which cannot capture the turbulent wake effects. This assumption was
based on the model proposed by Moore et al. (2013) and reasoned with observing significantly lower erosion rates on
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algorithm as suggested by Moore et al. (2013).
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Figure 10: Single deforming cylinder using the 2-D steady laminar approximation. (a) Drag and lift coefficients of the cylinder from an initial
circular shape until its final eroded form. (b) Cross sectional area evolution normalised by the initial area. Both the experiment (Ristroph et al.,
2012) and simulation follow a 4/3 power law.

the leeward face compared to the windward face in the experiment (Ristroph et al., 2012). Furthermore, the shear in
the wake would be significantly overpredicted in 2-D as the spanwise motion of the shedding vortices would not be
resolved (Mansy et al., 1994; Williamson et al., 1995). The curvature component of erosion vκ was modelled across
the complete cylinder.

The drag coefficient, using the time-dependent cross sectional area A = A(t), initially reduced as the cylinder
evolved from its circular shape to its more streamlined rounded triangular form, as shown in Figure 10a. After
reaching its terminal form where it eroded in a self-similar manner, the drag remained constant with CD = 0.5 towards
the vanishing point. The lift remained near zero because the flow was modelled in steady state (forcing a symmetric
flow field over the cylinder, with no oscillations). Cross sectional area reduced according to the 4/3 power law in
Equation 2 and matched closely with experimental data as shown in Figure 10b.

3.2. Single cylinder with vortex shedding
The simulated flow field needed to accurately model the experimental conditions to predict the erosion; including

the unsteady vortex shedding. The development of the oscillating vortex shedding and evolving wall shear stress
distributions are visualised with videos in the supplementary material. Key flow features are first verified against both
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Table 1: Summary of experimental and LES studies of a circular cylinder in cross flow within the subcritical flow regime

Study Method Re CD C ′
L St −CP,b θsep

Lim and Lee (2002) EXP 20 000 1.2 0.187 1.07
Son and Hanratty (1969) EXP 20 000 83◦

Norberg (1994, 2003) EXP 27 000 0.48 0.192 1.22
West and Apelt (1993) EXP 27 000 1.1 − 1.4 0.49 − 0.74
Schewe (1983) EXP 30 000 1.1 0.31 0.19
Son and Hanratty (1969) EXP 40 000 81◦

Yokuda and Ramaprian (1990) EXP 91 000 78◦

Heimenz (see White (1991)) EXP 80.5◦

Achenbach (1968) EXP 100 000 78◦

Salvatici and Salvetti (2003) LES 20 000 0.98 − 1.17 0.38 − 0.46 0.96 − 1.12
Wornom et al. (2011) LES 20 000 1.27 0.6 0.19 1.09 86◦

Lysenko et al. (2014) LES 20 000 1.3 0.75 0.2 1.2 88◦

Lysenko et al. (2014) LES 20 000 1.32 0.64 0.2 1.05 86◦

Current (fine mesh) DES 27 000 1.31 0.50 0.215 1.46 81◦

Current (coarse mesh) DES 27 000 1.19 0.47 0.16 1.27 79◦

experiments and LES simulations from literature as shown in Table 1. These experiments and simulations are within
the subcritical flow regime allowing a quantitative comparison using dimensionless values. West and Apelt (1993)
observed a relatively wide range in CD and C′L because the turbulence intensity u′/U was varied between 0.2 % and
7.5 %; inlet conditions can play a significant role in the drag and lift forces on the cylinder.

The current results with DES are in agreement with the experimental data and LES simulations; especially with
Norberg (1994, 2003) and West and Apelt (1993) who had values at Re = 27 000. St was underestimated for the
coarse mesh because a coarse time step was chosen to reduce the wall clock time of simulations. Seven time steps per
shedding cycle were used and St = 0.19 when the time step was reduced; as the oscillations were accurately resolved.
The fine mesh case in Table 1 is the result of the independence study on both the temporal and spatial discretisations.

Shearing forces on the cylinder wall was the driving mechanism of the receding boundary because the erosion
rate was directly proportional to this τw distribution. Therefore an accurate τw profile around the cylinder was the key
objective; a favourable comparison with experiments is shown in Figure 11. The τw is scaled with

√
Re as boundary

layer theory predicts this relationship (Son and Hanratty, 1969) such that the measurements collapse on a single
curve. The τw approached zero at the stagnation point and peaked around θ ≈ 50◦: corresponding to the highest rate
of erosion for the initial cylinder.

The separation point θsep = 79◦ is where τw transitions from a high value upstream to a significantly lower value
downstream. Overpredicting θsep gave a more streamlined evolution of the cylinder as this high τw was overestimating
the erosion on the sides of the cylinder. The profile of τw in the wake was resolved accurately (Figure 11) and allowed
simulation of erosion due to the shearing beyond θsep (in contrast to the steady 2-D laminar approximation as shown
in Figure 9).

The flow field was first developed for the rigid cylinder case as shown in Figure 12a. Transient statistics used in
Table 1 were sampled from t ≈ 600u∞/a0 across 228 vortex shedding cycles: where the flow was fully developed.
The non-uniform amplitudes of CD and CL are a feature of vortex shedding in the spanwise direction and are observed
both in experiments (Schewe, 1983) and simulations (Lysenko et al., 2014). This developed solution was then used
as the initial conditions for the deforming mesh simulations; across 637 vortex shedding cycles. CD and CL gradually
peak at t ≈ 0.2t f (20 % through the simulation) as the cylinder transforms from its initial shape; with peak erosion
occurring θ ≈ ±50◦. The CD and CL then decrease and plateau as the terminal form is reached. The total force acting
on the cylinder reduces with time significantly as the projected area against the flow also decreases; however, the
coefficients are scaled with A = A(t).

The cross sectional area evolution of the cylinder closely followed the same 4/3 power law and experimental values
as the steady 2-D laminar case shown in Figure 10b. The proportion and profile evolution on the leeward side of the
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Figure 11: Time-averaged wall shear stress distribution around a rigid circular cylinder using 3-D unsteady DES simulations (symmetric about the
stagnation point). The τw has been made dimensionless to compare with the experiments by Son and Hanratty (1969).
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Figure 12: Drag and lift coefficients using 3-D unsteady DES simulations for (a) the initial rigid cylinder from initial conditions and (b) the eroding
cylinder case starting from the developed flow field. The time range of (a) is approximately 2/3 that of (b).
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Figure 13: Erosion of a clay cylinder in water (flow is from left to right) using unsteady DES in 3-D (with 2-D shape evolution). The coloured
lines show the evolution of the cylinder profile where boundary nodes are represented with points. The erosion factor η = 1.4 × 10−3 and 600 mesh
updates were performed (every 50th is shown here). The solid grey lines are from the experiment (Ristroph et al., 2012) where the profiles are on a
separate time scale, are linearly spaced in time and terminate before t f by 8.2 %.

cylinder matched the experiment (Figure 13) indicating that θsep and the erosion in the wake was accurately captured
throughout the cylinder deformation. However, the aspect ratio (spanwise to streamwise 2a/l) was underestimated
where the erosion vn at the stagnation point was smaller when compared with the proportion of erosion on the sides
of the cylinder in the experiment. The curvature (vκ) and wall shear stress (vτ) erosion components were higher on the
sides than at the stagnation point but had lower erosion rates. Therefore, another physical mechanism (absent in the
model) was responsible for this quick propagation at the leading edge.

The separation angle increased from θsep = 79◦ as the cylinder transformed from its initial circular shape into a
more streamlined rounded triangular form. The separation point tended to θsep ≈ 106◦ (Figure 14a) as the terminal
flow was reached. Oscillations of ∆θ = 3◦ were caused by the unsteady nature of the flow.

A constant St was expected across the Reynolds range experienced by the cylinder as shown in experiments (Son
and Hanratty, 1969). The fv increased inversely proportional to a giving a constant St (Figure 14b) as predicted from
Equation 1. The final maximum radial distance a f = 0.25a0 yields a final Reynolds number of Re f = 7000. Similarly,
∆t̃ was scaled with a from Equation 11 giving a uniform resolution of seven time steps per vortex cycle. The discrete
jumps of St in Figure 14b straddling the mean value were caused by a numerical artefact of this coarse time resolution;
vortex periods were measured between peaks of CL and these discrete steps correspond to Tv/7.

3.3. Sparsely spaced lattice of cylinders

The cylinder within an infinite lattice of evolving cylinders produced a more rounded shape (Figure 15) compared
to the single cylinder case (Figure 13). The lattice cylinder had a greater portion of erosion on the upstream face than
the downstream face because of the turbulent, varied and oscillatory flow in the wake of the upstream cylinders. The
dominant influence on the cylinder was from the neighbouring cylinder directly upstream; the flow field and shear
profiles are shown as videos in the supplementary material.

A terminal form is also attained for the cylinder lattice where the separation angle tends to θsep ≈ 103◦ (Figure 16a).
The Strouhal number appears to decrease slightly in Figure 16b. Both θsep and St have significant scatter because of
the chaotic periodic inlet conditions: the wake of the upstream cylinders.
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Figure 14: (a) Separation angle and (b) Strouhal number of the evolving single cylinder with unsteady DES in 3-D.
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Figure 15: Erosion of a clay cylinder within a lattice of cylinders in water (flow is from left to right) using unsteady DES in 3-D. The coloured
lines show the evolution of the cylinder profile where boundary nodes are represented with points. The erosion factor η = 1.4 × 10−3 and 750 mesh
updates were performed (every 50th is shown here).
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Figure 16: (a) Separation angle and (b) Strouhal number of the evolving cylinder in a sparsely spaced lattice with unsteady DES in 3-D.

3.4. Closely packed lattice of cylinders

Flow surrounding the closely packed lattice with L/l0 = 2 transitioned from a reattachment regime to the co-
shedding regime (detailed in Section 2.1.2). Initially, the cylinder experienced a higher rate of erosion on the sides
compared with the sparsely spaced cylinder (Figure 15), as shown in Figure 17, as a result of the shear layer reat-
tachment between cylinders. The leading edge receded at a slower rate than the sides, forming a more streamlined
profile. However, the gap dynamics provided transient τw on this leading edge and a higher rate was simulated when
compared to the laminar upstream conditions (Figure 13).

Pitch ratio L/l consistently increased as the body eroded: L remained constant (cylinders were fixed) whereas l
decreased. Aspect ratio 2a/l initially reduced to a minimum of 0.65 at t/t f = 0.64 before increasing to a terminal ratio
of approximately unity, as shown in Figure 18a. This inflection point offers a suggestion for the transition between the
two flow regimes at L/l = 3.5 and agrees with experiments (Zdravkovich, 1987) which observed this regime change
at L/l = 3.4 − 3.8. The cylinder then erodes in a similar form as the sparsely spaced cylinder (entirely within the
co-shedding flow regime) where the body tends to a terminal form and experiences self-similar evolution.

The kink at t/t f = 0.68 in Figure 18a (and the slower erosion rate in Figure 17) is non-physical, but a numerical
artefact that corresponds to the manual remesh where the surrounding grid resolution increases. The number of cells
are conserved for each mesh update, causing a lower grid resolution over time as the cylinder shrinks and the fluid
volume increases. The kink was not apparent for L/l because the decrease of l was smaller than for 2a; less of a change
in grid resolution. However, the inflection point was slightly before this time and the body had begun to transition to
the co-shedding regime beyond the remeshing point.

Figure 17 shows a non-uniform rate of erosion through time; the evolution of τw is shown with videos in the
supplementary material. The leading edge initially erodes quickly until slowing at t/t f ≈ 0.2 (where the spacing
between the cylinder profiles are smallest) before eroding quickly again. The time of slowest simulated erosion had
a pitch ratio of L/l = 2.3 (Figure 18a) and this spacing is in agreement with the lowest observed drag in experiments
(Zdravkovich and Pridden, 1977).

Both relative spacings L/l and T/2a increased as shown in Figure 18a. The aspect ratio tended to a lower value
for the reattachment regime and then returned near unity within the co-shedding flow regime. Re scales linearly with
a and Re f = 2500 (still within the subcritical flow range).

Cross sectional area (Figure 18b) also decreases following a 4/3 power law for this closely packed cylinder case,
split into three sections for covering the different flow regimes. The slope of A(t) is steeper in the reattachment regime
compared to the co-shedding flow regime. The power law has a closer fit for the terminal form as t → t f with
consistent vortices shedding from upstream, and is a rougher fit for the transitioning period where the eddies between
cylinders have a wide range of dynamics (Sumner, 2010).
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Figure 17: Erosion of a clay cylinder within a closely packed lattice of cylinders in water (flow is from left to right) using unsteady DES in 3-D.
The coloured lines show the evolution of the cylinder profile where boundary nodes are represented with points. The erosion factor η = 1.4 × 10−3

and 734 mesh updates were performed (every 50th is shown here).
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Figure 18: Closely packed lattice of cylinders using unsteady DES in 3-D (a) Transverse (normal to flow) and longitudinal (parallel with flow)
spacings between cylinders in the closely packed lattice, normalised with their respective cylinder lengths 2a and l. (b) Cross sectional area
evolution normalised by the initial area.
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4. Discussion

4.1. Flow patterns

Laminar flow upstream conditions were applied for both single cylinder cases using the laminar and DES viscous
models. Re = 27 000 is within the subcritical flow regime and the shear layers from the sides of the cylinder formed
Kármán vortices in the wake. The steady laminar approximation neglected τw in the wake beyond θsep, and was in
good agreement with theory (Moore et al., 2013): the body evolved into a terminal form with a right angle pointed into
the direction of flow (Figure 8) with near uniform wall shear stress (Figure 9). Modelling the vortex structures in the
wake of the cylinder with scale resolving simulations allowed erosion based on τw on the leeward face. The location
of lowest τw, and thus erosion rate, was accurately captured on the sides of the cylinder (Figure 13) and the proportion
of erosion of the windward and leeward faces match reasonably well with experiment (Ristroph et al., 2012).

For the lattice arrangement cases, the cylinders block a portion of the fluid volume causing significant blockage.
The blockage ratio 2a/T is defined as the ratio of blocked (cylinder diameter 2a) to total (transverse spacing T ) cross
sectional length normal to the flow and cylinder axis. Our initial blockage was 2a0/T = 25 % for the sparsely spaced
case and 2a0/T = 50 % for the closely packed case. Blockage as low as 16 % causes an increase in drag as observed
in experiments at Re = 30 000 (West and Apelt, 1982). Consider an effective Reynolds number

Reeff =
2u∞a
ν

T
T − 2a

(13)

where the second term on the right hand side scales u∞ to the local velocity between cylinders (from the conservation
of mass principle). This term tends to unity for T → ∞ (unblocked flow) and tends to infinity for T → 2a (fully
blocked lattice with no flow). Reeff gives a rough approximation to compare flow properties between our cases and
of cylinder arrays in literature without blockage; particularly the cases where there is minimal proximity interference
but wake interference is important (for comparing with tandem arrangements).

Erosion rates of cylinders in higher speed flow are expected to be greater since τw ∝
√

Re as discussed by Son
and Hanratty (1969) and their shear distributions are shown in Figure 11. This correlation was observed between the
three cases using unsteady DES. The closely packed lattice with Reeff,0 = 55 000 had the quickest initial erosion rates,
followed by the sparsely spaced lattice with Reeff,0 = 37 000 and then the single cylinder with Reeff = 27 000. Both of
these Reeff,0, and consequently all Reeff, remain in the subcritical flow regime and therefore have similar flow patterns
throughout the cylinder evolution process.

The speed of vortex shedding increased as the cylinder eroded with fv, f / fv,0 ≈ 4 and a f /a0 ≈ 4 yielding a constant
St as shown in Figure 14b and predicted with Equation 1. This relatively constant Strouhal number supports the
notion that Kármán vortices scale with the characteristic length normal to flow, 2a, across an arbitrary bluff body. The
simulation time step ∆t̃ was scaled with a (Equation 11) allowing the simulation to capture the vortex shedding from
slower fv,0 to faster fv,0 speeds throughout the cylinder evolution.

4.2. Terminal form

In all four cases, the cylinder eroded towards a terminal form and then continued eroding self-similarly as shown in
Figure 19 with an aspect ratio of approximately unity, regardless of laminar or unsteady turbulent upstream conditions.
The steady laminar approximation case (Figure 19a) took longer to reach its terminal form compared to the unsteady
DES case (Figure 19b), specifically around the sides, because the evolving profile tracked around the leeward face (no
erosion downstream).

The terminal profile of the sparsely spaced lattice (Figure 19c) was reached quicker than the single cylinder cases.
Oscillating vortices were shed from the preceding cylinder (modelled with a periodic boundary) and provided a con-
sistent upstream flow field throughout the evolution. The subcritical flow regime remained from start to finish and the
relative size and frequency of the vortices remained roughly constant with the cylinder (St in Figure 16b). Whereas for
the single cylinder arrangements, the fluid structure coupling had a time dependence where the streamlines followed
the deforming boundary, altering the τw distribution (Figure 9), subsequently delaying the evolution to its terminal
form. This more gradual profile development was also observed in the experiment (Ristroph et al., 2012).

Initially, the cylinder profile in the closely packed lattice tended to a more streamlined body (Figure 19d) as τw

was higher on the sides where the shear layer reattached from the cylinder upstream. The flow transitioned from the

19



(a) (b)

(c) (d)

Figure 19: Scaled profiles of the four cases: (a) single cylinder, 2-D steady laminar with ϵ = 0.1 (b) single cylinder, 3-D unsteady DES with ϵ = 0.4
(c) sparsely spaced cylinder lattice, 3-D unsteady DES with ϵ = 0.4 (d) closely packed lattice, 3-D unsteady DES with ϵ = 0.4 (doubled the number
of mesh updates shown here for clarity of evolution). Colours are as per their respective profiles in Figures 8, 13, 15 and 17.
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Figure 20: (a) Opening angle ψ of the deforming cylinder boundary partway through a simulation. (b) Opening angles over time for the deforming
cylinder cases compared with experimental (Ristroph et al., 2012) and theoretical measurements (Moore et al., 2013).

reattachment regime to the co-shedding regime as the relative spacing between cylinders increased. The terminal form
of this configuration was similar to the sparsely spaced cylinders because both cases had similar wake interference
characteristics.

4.3. Erosion rates

Erosion at the leading edge was naturally driven by τw in the lattice of cylinders (Figure 15), whereas the leading
edge was driven by the curvature correction for the single cylinder (erosion begins after a curvature is formed, as shown
in Figure 13). The closely packed lattice featured several erosion rates (spacings between contours in Figure 17) as
the flow transitioned from the reattachment regime to the co-shedding regime.

Cross sectional area of all eroding cylinders followed a 4/3 power law in time for a wide range of Reynolds
number in the subcritical flow regime (Figures 10b and 18b) as predicted by theory (Equation 2). This relationship was
observed in both experiment (Ristroph et al., 2012) and simulations with consistent upstream conditions (Figure 10b).
However, the upstream flow conditions in the closely packed lattice changed significantly as the cylinder eroded and
the flow regimes transitioned. A steeper slope of the 4/3 power law fit was used in the heavily blocked flow period
t/t f < 0.1 compared to when the flow had negligible blockage effects at t/t f > 0.7. This discrepancy can be explained
by the difference in local velocity between the cylinders where Reeff/Re > 1 had higher τw and thus erosion rate when
compared to the low blocked case with Reeff ≈ Re. The transition time between these periods had vastly changing gap
dynamics but roughly followed the power law relationship (Figure 18b).

4.4. Opening angle

The opening angle ψ at the nose of the cylinder (pointed upstream) has been calculated by fitting a circle to each
of the top and bottom sides of the cylinder and finding their angle of intersection, as shown in Figure 20a. Nodes
were selected on the top and bottom sides according to their normal vector components, with a tolerance to exclude
nodes near the stagnation point where the curvature was significantly different. The opening angle ψ of all the eroding
cylinder cases begin with ψ = 180◦ (concentric circles of the top and bottom sides) and plateau to a final value as the
cylinder morphs into its final shape and erodes self-similarly.

Exact solutions predict a right angled wedge (ψ = 90◦) would produce uniform wall shear stress on the body
(Moore et al., 2013). The Prandtl-based model closely matched this analytical prediction with a final ψ = 91◦. The
2-D steady laminar simulation tended towards ψ = 95◦ for its self-similar evolution (Figure 20b), indicating that the
laminar approximation roughly matches the right angled wedge shape.

In contrast, the experiment had a wider nose angle of ψ ≈ 120◦ for its final form as shown in Figure 20b. The
3-D unsteady DES simulation captured the transition from the viscous layer to the developed shear layer causing
oscillating vortical structures and transient effects along the span of the cylinder; yielding a ψ = 118◦ which matches
well with the experiment.
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4.5. Curvature component

A curvature dependence was introduced for the interface evolution in Equation 4 as suggested by Moore et al.
(2013). They used this term for ensuring regularity of their numerical methods but also found that smoothing the
sharp edges replicated certain features in the experiment by Ristroph et al. (2012); including the roundedness of the
leading edge and around the regions of separation on the sides of the terminal body. Flow at the stagnation point was
stationary giving τw = 0 Pa, as shown in Figure 9 (face values are plotted although the stagnation point sits on a cell
node), which would not erode without a curvature term; causing a sharp point to form at the stagnation point and
ultimately leading to a singularity.

The curvature term appears to model a real physical mechanism experienced by the clay cylinder in the experiment
which would otherwise be absent in our simulations. Two possible sources of this mechanism are small scale flow
fluctuations and the slow dissolution of clay in water (Moore et al., 2013). Another potential factor for erosion could
be the static pressure. Mercier et al. (2014) modelled a submerged turbulent impinging jet and found the static pressure
at the stagnation point increased as the soil eroded; this static pressure appears to increase by a similar factor that their
peak τw decreased.

Erosion from this other mechanism (whether its explicitly or implicitly curvature dependent) seems to follow the√
L/L0 factor used in Equation 4 and suggested by Moore et al. (2013). This erosion term vκ may be a non-linear

addition to erosion by wall shear stress vτ and possibly describes a lower limit for erosion such that vn = max (vκ, vτ).
This hypothesis is based on observing the curvature evolution for the quasi triangular terminal shape for the single
cylinder case (Figure 13). Our simulations with ϵ = 0.4 matched the experimental profile at the nose (zero τw) but
overpredicted the curvature at θsep (non-zero average τw from the fluctuating flow field).

4.6. Future work

There were some differences between the simulations and experiment, specifically the aspect ratio of the terminal
form was underestimated as shown in Figure 13. However, our cylinder profiles were generally in agreement with the
experiment (Ristroph et al., 2012) for the proportion of erosion in the wake and on the sides. The curvature component
in Equation 4 and discussed in Section 4.5 appears to provide an approximate correction although this term could be
explored further.

One limitation in the simulations was the coarse grid and time resolutions due to the computational restrictions
inherent in scale resolving simulations. Future work could include resolving the vortices and particularly θsep by
refining the mesh and increasing the number of time steps per vortex period. Other limitations include the prescribed
spanwise extent, uncertainties in turbulence model and uncertainties in experimental measurements.

Experiments with either a different Re (within the subcritical flow regime) or cylinder arrangement using the same
clay material would allow a quantitative validation of erosion rates (compared with our non-dimensional analysis).
The material dependent coefficient (absorbed in η alongside the pseudo erosion time step in Equation 6) could be
compared between both cases and in theory should be equivalent.

Other simulations could be performed on tandem cylinders without reattachment using a small pitch ratio of
1 < L/l < 1.2 − 1.8. This case would require either a dense mesh within the gaps or added cells throughout the
simulation, remeshing, to ensure a sufficient grid density to capture the gap dynamics. Another potential setup includes
staggered cylinder arrangements which are often used in heat exchangers and have a finite array of cylinders; voiding
the assumption of periodic boundaries.

5. Conclusion

A cylinder was modelled in high speed flow and compared with existing experiments. The eroded cylinder con-
verged to a rounded triangular shape and continued eroding self-similarly with this terminal form. The upwind face
had a uniform shear stress distribution and featured a near right-angled wedge directed into the flow as predicted
by theory (Moore et al., 2013); this uniform erosion rate lead to a bluff body rather than a streamlined profile. A
cylinder was then simulated within an infinite array of other cylinders, forming a lattice. This arrangement provided
an oscillatory motion of vortices upstream and we found a similar terminal form emerged. The evolving profile of
the cylinder was sensitive to the surrounding flow field; a closely packed lattice resulted in an intermediate profile
more streamlined than its terminal form when the flow field closely resembled the sparsely separated case. However,
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a similar ultimate terminal form emerged regardless of the initial and intermediate shapes. Numerical simulations are
a powerful tool for predicting and exploring physical phenomena and we have shown that CFD can accurately capture
the fluid structure interaction of an eroding cylinder with large shape and size deformation.
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