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Abstract

A fluid-structure interaction problem with the melting of water around a heated horizontal circular cylinder is analysed with numer-
ical simulations. Dynamic meshing was used for evolving the flow domain in time as the melting front extended radially outward
from the cylinder; a node shuffle algorithm was used to retain mesh quality across the significant mesh deformation. We simulated
one case above the density inversion point of water and one case below, yielding pear-shaped melting fronts due to thermal plumes
either rising or falling from the cylinder, respectively. Results were compared with previous experimental studies and the melting
front profiles matched reasonably well and melting rates were in agreement. We confirm that natural convection plays a significant
role in the transport of energy as the melt zone increases, and needs to be considered for accurately modelling phase change under
these conditions.
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1. Introduction

Thermal energy storage plays an important role in utilising
energy resources effectively because often the timing of
generation and consumption of energy can vary from hours to
months. For example, solar energy is only available during the
day and therefore effective energy storage is required for utilis-
ing solar energy during the night. Similarly, power stations
must design for peak loads whereas adequate energy storage
would allow more efficient use of generators as peak times can
be offset by stored energy from off peak times. An efficient
method of storing thermal energy is with latent heat which
provides a high storage density and requires a smaller differ-
ence between storing and releasing temperatures compared
with the sensible heat storage method (Farid et al., 2004).
There has also been recent studies on using phase change
materials for passive cooling in buildings where latent heat is
used to increase the thermal inertia of building envelopes,
regularising the ambient temperature (Akeiber et al., 2016).

The moving boundary problem where the solid and liquid
phase change process occurs forms the classical Stefan
problem (Stefan, 1891); named after the Slovene physicist
Joz̆ef Stefan (1835-1893). This moving boundary is a function
of both time and space and is unknown a priori; creating a
coupled fluid structure interaction problem to model.

Heat transfer by conduction dominates as the mechanism
responsible for melting in the initial stages, when a thin layer
of water is present. However, natural convection (due to the
temperature dependent water density) plays an important role
as the melting front advances outward from the heat source
and the volume of the flow domain increases (White et al.,
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1977; Sparrow et al., 1978; Bathelt et al., 1979). The flow
induced from these buoyancy effects creates temperature fields
which lead to a pear-shaped solid-liquid interface. Water has a
density inversion near 4.0 ◦C which influences the location of
enhanced melting (either the warmer water rises or falls
around the cylinder). An inverted pear-shaped interface was
found for cylinder temperatures below 8.0 ◦C (Herrmann et al.,
1984) and near concentric interface evolution at 8.0 ◦C. We
simulate one case below and another above this critical
cylinder temperature to explore both scenarios due to the
density inversion of water.

Experiments have previously been undertaken on the
melting of phase change materials around horizontal
cylindrical heat sources of: n-paraffins (n-heptadecane and
n-octadecane) (Bathelt and Viskanta, 1980) where no density
inversion exists; and water (White et al., 1986) at temperatures
around the density inversion point. We simulate water as the
phase change material and quantitatively compare our results
with the latter set of experiments.

Previous simulation approaches include numerical mapping
techniques where the transformed domain morphs over time
(Rieger et al., 1982; Ho and Chen, 1986), and another by using
the latent heat content which varies between zero (solid) and 1
(liquid) (Darzi et al., 2012). The first approach involves
tracking the melting interface via domain mapping and
calculating the governing equations on a stationary grid. The
second approach employs a single mesh where cells have a
liquid fraction assigned and the interface is determined based
on a fraction threshold criteria. Alternatively, we directly
tracked the moving boundary by dynamically updating the
mesh throughout the simulation based on the heat flux at the
solid-liquid interface.



2. Methods

2.1. Problem description
The physical problem studied in this paper is of ice melting

radially outward from a horizontal isothermal heated cylinder.
Initially, the ice has a uniform temperature at its fusion point
T f and the cylinder is heated to Tw > T f . We model the molten
ice as a single phase with the interface boundary imitating the
Stefan condition. The interface is tracked across discrete time
steps where the mesh dynamically updates. Flow is solved in
steady state at each time step, leading to a quasi-steady state
simulation.

Considering the complexity of modelling phase change
materials with dynamic boundaries, the following assumptions
were made: (1) motion of water is laminar, 2-D and is
incompressible; (2) thermophysical properties of water, except
density, are constant across the temperature range modelled;
(3) the Boussinesq approximation (density variations only
feature in the buoyancy source term); (4) viscous dissipation
and volume difference due to phase change are neglected; and
(5) thermal equilibrium exists at the interface.

2.1.1. Geometry and boundary conditions
The heated cylinder, bounded with a radius of

Rw = 12.7 mm, is located at the centre of the computational
domain and remains stationary. We selected two cylinder wall
temperature values: Tw = 2.3 ◦C and Tw = 14.1 ◦C, to directly
compare our simulation results with existing experimental data
(White et al., 1986); one below the minimum density point
Tm = 4.029 325 ◦C (heat source sinks) and one above Tm (heat
source rises).

Ice surrounds the cylinder outward to infinity and the
interface between the ice and water is described with the radial
distance Ri(θ, τ) where θ is the angle measured from the base
of the cylinder. The computational domain resides between the
heated cylinder wall boundary and the dynamic melting
interface.

A dimensionless melted ice volume ratio V was defined as
the ratio of molten ice to the isothermal cylinder, calculated
with

V =
Ai − Aw

Aw
(1)

using cross-sectional areas A because the depth is an arbitrary
parameter for our 2-D model. The area enclosed by the
interface Ai was calculated by treating the nodes outlining the
boundary as a simple polygon, and the constant wall area was
calculated with Aw = πR2

w.
A structured O-grid mesh of 40 × 80 (radial ×

circumferential) was used in all of the simulations. Uniform
cell lengths were specified around the perimeter and a bias was
applied in the radial direction to cluster cells near both of the
boundaries; in order to resolve the thermal boundary layers.
The outer boundary (solid and molten ice interface) expands
and the mesh dynamically updates accordingly throughout the
simulation as shown in Figure 1. Computational cells within
the mesh are deformed and translated without creating or

Figure 1: Computational mesh evolution from initial (top left) to final (bottom
right) geometry for one of the simulations.

destroying cells; a constant number of finite volume cells are
retained throughout each simulation.

Dirichlet conditions were applied to the cylinder wall and
interface boundaries with temperatures of Tw and Ti respec-
tively, and no slip shear conditions were also imposed. The
front and back boundaries of the O-grid domain were set as
symmetry with one cell depth to enforce the 2-D assumption.

2.1.2. Initial conditions
The experiments (White et al., 1986) started with the solid

ice in contact with the cylinder such that the initial interface
radius R0 = Rw (no molten ice was present). However, our
simulations require a finite volume to begin with and therefore
we used R0 = 1.2Rw and offset the time appropriately with t0
(as calculated based on the analytical solution of heat transfer
by conduction described in Section 3.1.

As the heat transport within the molten ice is dominated by
conduction in the initial stages, we initialised the
computational domain with the analytical solution to this
conduction problem. Velocities were set to zero and the
temperature field was initialised using

T = (Ti − Tw)
ln (r/Rw)
ln (Ri/Rw)

+ Tw (2)

where r is the radial coordinate; with the substitution Ri = R0.

2.1.3. Fluid properties
The nonlinear variation of water density ρ was included in

our simulations by using a ρ relation in the range of T = 0 to
20 ◦C (Gebhart and Mollendorf, 1977)

ρ = ρm(1 −CT |T − Tm|q) (3)
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where ρm = 999.9720 kg/m3, CT = 9.297 173 × 10−6 /K is the
temperature coefficient, Tm = 4.029 325 ◦C and q = 1.894 816
the temperature index.

Thermophysical properties of water were evaluated at an
average temperature of T ≈ 5 ◦C: specific heat
cp = 4.20 kJ/kg K, dynamic viscosity µ = 1.52 g/m s and
thermal conductivity k = 0.57 W/m K. These properties vary
slightly across the temperature range simulated but have a
negligible influence on the melting rate compared to the
density variation.

The constant temperature of the heated cylinder Tw was non-
dimensionalised with the Stefan number

Ste =
cp(Tw − T f )
∆h f

(4)

where ∆h f = 333.55 kJ/kg is the latent heat of fusion. The time
t was made dimensionless with the product of the Fourier and
Stefan numbers with

τ =
αt
R2

w
Ste (5)

where α = k/ρcp is the thermal diffusivity.
The Rayleigh number is a measure of the intensity of natural

convection within the molten ice. A density based definition
(White et al., 1986) was chosen to handle the non-linear density
variation and density inversion feature, with

Ra =
gR3

w(ρm − ρfilm)
ναρm

(6)

where g = 9.806 65 m/s2 is the acceleration due to gravity, ν
the kinematic viscosity and ρfilm the density at the film temper-
ature Tfilm = (Ti + T f )/2. Ra approaches zero at the density
inversion point (Tw = 8.0 ◦C and therefore Tfilm = 4.0 ◦C)
where natural convection plays an insignificant role.
Conversely, Ra increases further from this point and is positive
for both upright and inverted pear-shaped melting fronts.

2.2. Numerical procedure
Our simulations were performed using ANSYS Fluent R17.0

as the computational fluid dynamics software. Data analysis
and visualisation of results were coded in MATLAB 2016b.

2.2.1. Governing equations
Fluent is a cell centred finite volume solver and was

employed to solve the momentum, continuity and energy
equations. Second order spatial discretisation methods were
set for the pressure, momentum and energy equations.
Pressure and velocity were coupled with the PISO scheme.
Under-relaxation factors of 0.3 (pressure), 1 (density), 1 (body
forces), 0.7 (momentum) and 0.7 (energy) were used.

The fluid time step specified in Fluent was 1 × 106 s
(quasi-steady state assumption) whereas the dynamic mesh
step used for deforming the interface was ∆t = 250 s
(τ = 0.006) resulting in 120 steps for the inverted pear-shape
and ∆t = 20 s (τ = 0.003) with 200 steps for the upright
pear-shape case. A maximum number of 50 iterations per time
step was used as this number gave iterative convergence of the
solution.

2.2.2. Melting interface boundary
The velocity of the melting front at the solid-liquid water in-

terface was given by the Stefan condition (Moore, 2017)

vi = −
αcp

∆h f

dT
dn

⏐⏐⏐⏐
i
n̂ (7)

where n̂ is the unit normal vector to the interface and is
directed toward the solid phase. The vi was positive for all
cases because a negative temperature gradient existed at the
interface boundary; yielding an outward melting front from the
warm cylinder throughout the simulations.

2.2.3. Dynamic mesh
The dynamic mesh model in Fluent was employed for han-

dling the changing mesh through time. Nodes on the interface
boundary were displaced with

∆xi = ∆tvi (8)

where x is the position vector composed of x the horizontal and
y the vertical coordinates; using user-defined functions.

A node shuffle algorithm (Hewett and Sellier, 2017) was used
to uniformly distribute the nodes around the interface at each
mesh update. Without this algorithm, mesh quality degrades as
the profile of the boundary morphs into its new shape and the
simulation diverges.

The interior nodes were updated with a linearly elastic solid
model (with the mesh smoothing based option in Fluent). Mesh
motion was governed by

∇ · σ(m) = 0 (9)

where σ is the stress tensor and m the mesh displacement vec-
tor,

σ(m) = Etr(ϵ(m))I + 2Gϵ(m) (10)

where ϵ is the strain tensor,

ϵ(m) =
1
2

(∇m + (∇m)T) (11)

and was parameterised with Poisson’s ratio

Po =
1

2(1 +G/E)
(12)

where G is the shear modulus and E the Young’s modulus;
where we used the default of Po = 0.45 which gave robust
mesh deformations and retained similar thermal boundary
layer resolutions throughout the simulations.

3. Results

We first validated our model by using a phase change
material with uniform density (no natural convection;
conduction only) and compared the results with the analytical
solution. Next, we simulated one case below the temperature
threshold Tw = 8.0 ◦C where an inverted pear-shape interface
developed, and one case above where an upright pear-shape
melting front formed.
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Figure 2: Melting interface evolution assuming uniform density with Tw =

2.3 ◦C. Profiles are equally spaced in time.
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Figure 3: Time step convergence of melt volume over time for the uniform
density case at Tw = 2.3 ◦C.

3.1. Validation with uniform density

The Stefan problem is simplified when a uniform fluid
density is employed such that no natural convection exists and
the heat is transferred exclusively by conduction. Equation 2
describes the temperature field throughout the melting evolu-
tion for this reduced one-dimensional case. The temperature
gradient in Equation 7 was calculated by numerically
differentiating the temperature at the interface boundary.

Evolution of the melting interface between the solid and liq-
uid water phases are shown in Figure 2. All time interface pro-
files are concentric with the cylinder, caused by uniform tem-
perature gradients at the boundary, because no flow was gener-
ated within the fluid. The melting front is quickest during the
initial period where the ice is almost in contact with the heated
cylinder and slows as the interface recedes outward.

The rate of melt volume (Figure 3) is greatest at the
beginning and reduces over time; monotonically increasing.
Simulations overestimate the melting rate because the tempera-
ture gradient was explicitly calculated at each step (essentially
an Euler method). The coarse mesh time step of ∆τ = 0.024
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Figure 4: Melting interface profiles for Tw = 2.3 ◦C, comparing
simulation with experiment using paired dimensionless times of τ =

0.039, 0.172, 0.223, 0.350 and 0.524 (extending outward from the cylinder
respectively).

significantly overestimates the melt volume and time steps of
∆τ ⩽ 0.006 agree well with the analytical solution.

Mesh independence was studied on a case by case basis as
the flow features requiring varying mesh resolution levels
differed across the cylinder temperatures and whether natural
convection occurred or not. For example, the pure conduction
case achieved mesh independence with a coarser mesh than the
cases where natural convection occurred; recirculation of the
flow needed to be resolved. Similarly, the mesh time step was
converged for each case.

3.2. Inverted pear-shape (T < 8.0 ◦C)
A low cylinder temperature of Tw = 2.3 ◦C (Ste = 0.029,

Ra = 6700) was chosen such that the coldest water had the
lowest density (below the density inversion point). The melting
interface, shown in Figure 4, initially advances concentrically
from the cylinder at the same rate as the uniform density case
(Figure 2).

Buoyancy driven flow develops as the melt volume increases
causing recirculation as shown in Figure 5. The warm water
sinks (due to the density variation specified via Equation 3),
enhancing the melting rate at the base causing an inverted pear-
shape form.

Molten ice volume over time is shown in Figure 6 where
both our simulation and the experiment (White et al., 1986)
closely follows the uniform density during the early stages of
melting. This uniform density approximation begins to deviate
at τ ≈ 0.2 where the fluid heat starts to be transported by
natural convection in addition to conduction, causing the
approximation to underestimate V .

A spike in V at τ = 0.223 was observed in the experiment
(Figure 6) which was not featured in our results. However, the
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Figure 5: Streamlines for Tw = 2.3 ◦C at τ = 0.524.
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Figure 6: Molten ice volume over time with Tw = 2.3 ◦C.

slope of V with τ match closely between the final two
experiment data points and the second half of our simulation.
Furthermore, the shape Ri(θ) closely resembles the experiment
but lags slightly behind in time.

3.3. Upright pear-shape (T > 8.0 ◦C)

The final case included the density inversion effects of water
by prescribing a cylinder boundary temperature of Tw = 14.1 ◦C
(Ste = 0.178, Ra = 7400). The melting interface for this case
also begins with a concentrically evolving profile as shown in
Figure 7.

A thermal plume develops as the molten ice volume increases
and this plume generates two counter-rotating vortices as shown
in Figure 8; these vortices were also observed in experiments
(White et al., 1986). This rising warm water and corresponding
vortices causes an upright pear-shape profile to emerge.

The molten ice volume deviates from the uniform density
approximation earlier for this warmer case as shown in
Figure 9. The ice melting rate observed in the experiments
appear to exceed that of by pure conduction even in the early
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Figure 7: Melting interface profiles for Tw = 14.1 ◦C, comparing
simulation with experiment using paired dimensionless times of τ =

0.045, 0.122, 0.177, 0.272 and 0.370 (extending outward from the cylinder
respectively).

stages of the process at τ = 0.045 whereas our simulations
follow this rate until τ ≈ 0.1. Similar to the low temperature
case, the slope of V with τ match reasonably well between the
experiment and our simulations during the natural convection
dominated heat transfer regime.

Instantaneous interface profiles match closely with the
experiment (Figure 7) but are out of sync; slightly lagging in
time. Small asymmetric features were observed in the experi-
ment during the final time snapshots whereas our simulations
predicted symmetric profiles about the vertical plane.

4. Discussion

The solid-liquid interface advanced radially outward from
the heated cylinder in all cases; causing a monotonically
increasing melt volume. Resolidification of the molten ice was
not allowed in our model as a positive temperature gradient
was present at the interface boundary (since T > T f throughout
the domain); and resolidification was not observed in experi-
ments (White et al., 1986). The conduction only case exhibited
uniform melting rates as a function of θ, resulting in concentric
interface profiles, whereas the other two cases involving natu-
ral convection featured eccentricity in their interface shapes
beyond the initial conduction dominated period. The location
of eccentricity was determined by the opposite direction of the
thermal plume: either above or below the cylinder.

The local Nusselt number around the melting interface was
defined as

Nui =
Ri

T f − Tw

dT
dn

⏐⏐⏐
i (13)
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Figure 8: Streamlines for Tw = 14.1 ◦C at τ = 0.370.
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Figure 9: Molten ice volume over time with Tw = 14.1 ◦C.

where an area averaged radius of Ri =
√

Ai/π was used to
account for the time-dependent expansion of the domain.
Figure 10 shows that the total heat transfer rapidly decreases in
the early stages as the conduction heat transport mechanism
accelerates the melting process. Heat transfer was uniform
around the cylinder up until τ ≈ 0.05 where the local angle
dependent Nu numbers split and natural convection begins to
develop. However, the melt volume rate deviates between the
two cases at τ ≈ 0.2 (Figure 6) indicating that the average
melting rate is similar, regardless of the non-uniform melting
rate, for 0.05 < τ < 0.2. Average Nu appears to plateau toward
the end of the simulation (τ > 0.6), indicating that an
equilibrium of the melting rate has been reached; also shown
as the slope of V with τ in Figure 6.

Heat transfer by conduction dominated the early stages of
the process and natural convection became a significant factor
as the molten ice volume expanded, allowing recirculation to
occur (Figures 5 and 8). Experiments observed a spike in the
rate of melting at the transition between the conduction and
natural convection dominated heat transfer regimes. Our
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Figure 10: Variation of the local and total Nusselt numbers over time for the
inverted pear-shape case (Tw = 2.3 ◦C). Angle θ is measured from the base of
the cylinder and is positive in the anti-clockwise direction.

simulations did not capture this counter-intuitive local spike,
possibly due to our simplified assumptions including 2-D
steady flow. Local transient fluid motion induced from the
transition from conduction to natural convection (unsteady
flow) or 3-D effects may have been responsible for this
enhanced melting rate. White et al. (1986) observed 3-D
vortex motion in the later stages of the melting process causing
ripples around the interface along the cylinder axis.

Standard uncertainties in measurements (either explicitly or
implicitly via perturbing the rig) and values used for the
thermophysical properties are other possible sources for the
quantitative discrepancy between simulations and experiment.
Melting rates and flow features are highly sensitive to the
temperature of the heated cylinder. However, it is important to
note that the interface shapes closely match throughout the
melting process; and only the time dependent interface
evolution at the flow regime transition differs.

The Rayleigh numbers of the two pear-shape cases involv-
ing natural convection were similar: 6700 (inverted) and 7400
(upright). However, each case was either side of the density in-
version point of water. The inverted pear-shape had a positive
monotonic relationship of density to temperature yielding a
relatively simple recirculation flow pattern on each side of the
pear. In contrast, the upright pear-shape encompassed the
density inversion point causing more complex flow features
such as counter-rotating vortices above the cylinder separated
by the thermal plume (Figure 8). An instability of the thermal
plume was observed in the experiment (White et al., 1986) at
τ ≈ 0.3 as the melt layer grew. These instabilities, and any
unsteady flow features, are absent in our steady state model
which could explain the discrepancy between the melt rates
from τ = 0.3 for the Tw = 14.1 ◦C (Figure 9).

We assumed the flow field was in steady state for each
discrete flow domain update (mesh step). The streamlines
shown in images produced with an interferometer during the
experiments (White et al., 1986) indicate a mostly symmetric
and steady flow field. However, slight perturbations and
unsteady behaviour could cause greater heat mixing leading to
faster melting, particularly for the Tw > 8.0 ◦C case. For
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example, assuming 2-D steady flow significantly overestimates
the skin friction in the wake of an eroding cylinder evolving to
a different shape than that of simulating with 3-D unsteady
flow (Hewett and Sellier, 2017). Another step would be
required for including these unsteady effects: the
time-averaged wall temperature gradient must first be
established before calculating vi or the mesh would be
deformed based on instantaneous local transients.

5. Conclusion

Numerical simulations were used to model the classical Ste-
fan problem around a heated horizontal cylinder near the den-
sity inversion point of water by modelling both conduction and
natural convection heat transfer. The melting front was explic-
itly tracked with a dynamic mesh and a node shuffle algorithm
was employed to retain mesh quality through significant mesh
deformation.

Heat transfer by conduction was dominant for the early
stages of melting and natural convection played an important
role as the melt zone increased. A stable steady flow field was
found for the case below the density inversion point whereas a
more complex and less stable flow was simulated when
including the density inversion point. Pear-shaped melting
interfaces developed as a thermal plume from the heated
cylinder interacted with the solid-liquid boundary.

This paper provides a validation for modelling Stefan
problems by tracking the melting front interface using only the
local temperature gradient and fluid properties. The
constitutive relation, along with the tools for handling the
mesh deformation, form a useful approach for simulating this
melting boundary problem found in latent heat thermal energy
storage systems. This approach can also be applied to other
scenarios of moving boundary problems.

References

Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh
I, Calautit JK, Hughes BR, Zaki SA. A review on phase change material
(PCM) for sustainable passive cooling in building envelopes. Renewable
and Sustainable Energy Reviews 2016;60:1470–97.

Bathelt AG, Viskanta R. Heat transfer at the solid-liquid interface during melt-
ing from a horizontal cylinder. International Journal of Heat and Mass Trans-
fer 1980;23(11):1493–503.

Bathelt AG, Viskanta R, Leidenfrost W. An experimental investigation of nat-
ural convection in the melted region around a heated horizontal cylinder.
Journal of Fluid Mechanics 1979;90(2):227–39.

Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside con-
centric and eccentric horizontal annulus. Applied Mathematical Modelling
2012;36(9):4080–6.

Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change
energy storage: materials and applications. Energy Conversion and Manage-
ment 2004;45(9-10):1597–615.

Gebhart B, Mollendorf JC. A new density relation for pure and saline water.
Deep Sea Research 1977;24(9):831–48.

Herrmann J, Leidenfrost W, Viskanta R. Melting of ice around a horizontal
isothermal cylindrical heat source. Chemical Engineering Communications
1984;25(1-6):63–78.

Hewett JN, Sellier M. Evolution of an eroding cylinder in single and lattice
arrangements. Journal of Fluids and Structures 2017;70:295–313.

Ho CJ, Chen S. Numerical simulation of melting of ice around a horizontal
cylinder. International Journal of Heat and Mass Transfer 1986;29(9):1359–
69.

Moore MNJ. Riemann-Hilbert problems for the shapes formed by bodies dis-
solving, melting, and eroding in fluid flows. Communications on Pure and
Applied Mathematics 2017;.

Rieger H, Projahn U, Beer H. Analysis of the heat transport mechanisms during
melting around a horizontal circular cylinder. International Journal of Heat
and Mass Transfer 1982;25(1):137–47.

Sparrow EM, Schmidt RR, Ramsey JW. Experiments on the role of natural con-
vection in the melting of solids. Journal of Heat Transfer 1978;100(1):11–6.
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