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Abstract

Fluid dynamics between a particle-laden flow and an evolving boundary are found in various contexts. We numerically simulated the
morphodynamics of silica particle deposition from flowing water within geothermal heat exchangers using the arbitrary Lagrangian-
Eulerian method. The silica particles were of colloidal size, with submicron diameters, which were primarily transported through
the water via Brownian motion. First, we validated the Euler-Euler approach for modelling the transport and deposition of these
colloidal particles within a fluid by comparing our simulation results with existing experiments of colloidal polystyrene deposition.
Then we combined this multiphase model with a dynamic mesh model to track the gradually accumulated silica along the pipe
walls of a heat exchanger. Surface roughness was modelled by prescribing sinusoidally-shaped protrusions on the wall boundary.
The silica bed height grew quickest at the peaks of the ripples and the spacing between the protrusions remained relatively constant.
The rough surface experienced a 20 % reduction in silica deposition when compared to a smooth surface. We also discuss the
challenges of mesh deforming simulations with an emphasis on the mesh quality as the geometry changes over time.
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1. Introduction

Deposition of particles onto a surface through a fluid is a
common process found in both nature and industries. For ex-
ample, sediment is transported by water in the ocean near the
seabed and develops wave-formed sand ripples [1]. Deposited
material may also detach from the seabed and the net amount
of material changes over time, gradually modifying the seabed
into ripple shaped structures [2]. This phenomenon is also
found in rivers [3] and channels [4]. Experimental [5] and
numerical [6] studies have observed migration of these ripples
downstream; by analysing sediment dynamics of particles with
diameters on the order of 300 µm. Ripple structures have also
been observed in biofilms [7], ski moguls [8] and washboard
roads [9]. The coupling between the multiphase water and
seabed forms an evolving boundary problem. A similar
process of particle deposition and resuspension has been
studied for industrial pipe flow [10, 11]. An application of
particle deposition with an evolving surface is 3-D printing
[12] where manufacturing of more complex geometries can be
achieved when compared to traditional tools.

The context of deposition with an evolving boundary we
investigate in this paper is silica scaling which occurs in pipe
flow within geothermal power stations. The silica is initially
dissolved within water in the underground reservoirs and then,
as the mixture reaches the plant equipment at the ground
surface, the silica precipitates and forms silica particles [13].
These colloidal (submicron diameter) silica particles are trans-
ported through pipe systems within the power plant and may
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attach to pipe surfaces; gradually accumulating a layer of silica
deposit over the period of months or years [14]. This layer of
silica adversely affects the performance of heat exchangers. In
particular: the pressure loss is increased due to the smaller
pipe cross sectional area, and also the heat transfer is reduced
as the layer of silica provides an additional thermal resistance.

Various silica scale morphologies have been observed in
experiments [15, 16, 17] including fibrous deposits, cellular
structures and rippled patterns. We numerically simulate the
latter deposit structure where rippled structures are aligned
normal to the direction of flow (circumferential direction for
pipe flow). Numerical simulations and models on silica scaling
have previously been explored [18, 19, 20, 21]. The focus of
this study is the influence of the morphological evolution on
the deposition rate by using an evolving boundary model.

One approach for modelling evolving boundary problems is
the immersed boundary method [22] where the interface is
modelled on a static mesh. An advantage of this approach is
not requiring grid transformations [23]; these grid
transformations, or remeshing, are computationally expensive
tasks. However, a refined mesh is important for capturing
momentum and concentration boundary layers and therefore a
large proportion of the static grid would need to be refined in
cases where the interface moves significantly; resulting in a
high number of computational cells.

Another approach for modelling evolving boundary
problems is tracking the boundary explicitly by modifying
fluid properties of the finite volume cells. The block mesh
method involves converting fluid cells to solid cells and the
interface is defined as the boundary between the fluid and solid
zones. This method has been used for modelling fouling in



diesel engine exhaust systems [24] and particle deposition on a
cylinder in cross flow [25]. However, the boundary between
the fluid and solid regions is restricted to the cell faces,
resulting in a relatively coarse description of the interface. Fur-
thermore, the resolution of the boundary layer is also restricted
by the refinement of the mesh and an excessive number of cells
would be required for significant deformations; a similar
disadvantage to the immersed boundary method.

A third evolving boundary model is the arbitrary
Lagrangian-Eulerian (ALE) method [26, 27, 28] which
transforms the mesh throughout the simulation to facilitate the
boundary deformation. The advantage of this method is that
the mesh topology remains constant throughout the simulation
and only the individual cells are transformed. The majority of
the deformation can be absorbed in the far field region
allowing the mesh near the boundaries to remain mostly
consistent for the duration of the simulation, and consequently
preserving the resolution of the flow gradients in the boundary
layer. Fluent, a computational fluid dynamics software, has
developed a dynamic mesh model where flows are simulated
with a dynamic domain by using deforming boundaries. The
boundaries are prescribed with user-defined functions and the
mesh interior is dynamically updated at each time step. This
model has been validated against experiments with a heart
valve [29], with the erosion of a cylinder in cross flow [30] and
the melting ice front around a heated cylinder [31]. In this
paper, we use the dynamic mesh model, coupled with
modelling the silica particle phase, to explore the impact of
boundary evolution on accumulation of colloidal silica in pipe
flow at the microscale and compare our results with an
experimental test rig [32, 33].

2. Methods

Two flow configurations were investigated: Poiseuille flow
(parallel plates with stationary walls) and Couette flow
(parallel plates with the upper wall moving and the lower wall
stationary). Both configurations had distinct geometry and
particle parameters but had similar physicochemical properties
and dimensionless flow dynamics including steady 2-D
laminar flow conditions. First, the Poiseuille flow case was
used as a validation using existing experimental data to ensure
the chosen method of simulating colloidal particle transport in
laminar flow was accurate. Polystyrene colloidal particles
were modelled within a parallel plate flow cell and their initial
deposition rate onto the smooth rigid boundary was compared
with experimental [34] and analytical solutions [35]. Second,
the accumulation of deposited colloidal silica particles was
modelled in turbulent pipe flow where the pipe wall
augmented as a function of the silica deposition flux; causing
an evolving boundary problem. The pipe wall had a
combination of smooth and sinusoidally-shaped protrusions: a
single protrusion was simulated and then a series of bumps,
forming a surface roughness model. Both configurations were
simulated using two phases: one for the fluid, and a second for
the dilute suspension of particles. ANSYS Fluent R17.0 was

Table 1: Mesh convergence (streamwise × wall normal) and validation of par-
ticle deposition flux at the centre of the plate, for the Poiseuille flow configura-
tion, compared with the analytical Smoluchowski-Levich approximation.

Mesh j (#/cm2 s) Error (%)

116 × 10 249.0 −17.3
145 × 30 312.1 3.7
232 × 50 301.9 0.3
464 × 70 300.4 −0.2
Analytic 301.1

used as the finite volume solver and MATLAB R2016b for the
data analysis and visualisation.

2.1. Geometry and meshing

Dimensionless length scales such as the dimensionless verti-
cal wall distance y+ are defined as

y+ =
yu∗

ν
(1)

where y is the vertical distance normal to the surface, u∗ the
shear velocity and ν the kinematic viscosity. Time t is non-
dimensionalised with

t+ =
tu∗2

ν
(2)

and the shear velocity is defined as

u∗ =
√
τw,smooth

ρ
(3)

where τw,smooth is the wall shear stress in the absence of any
sinusoidal protrusions and ρ the fluid density.

2.1.1. Poiseuille flow
The experimental test section [34] had a length of

L = 76 mm. Half the distance between the parallel plates was
b = 0.3 mm, and we set an arbitrary depth of 2 mm using one
cell in the spanwise direction (across the plates, normal to the
flow). We extended the length of the computational domain by
20 mm (≈ 67b) in both the upstream and downstream
directions in our computational domain to isolate end effects of
the inlet and outlet. These developing flow regions were
excluded from data analysis and are truncated from the
presented results for clarity.

A structured Cartesian grid was generated with uniform cell
spacings in the streamwise direction and a bias near the walls
in the wall normal direction (between the parallel plates) to
capture the near-wall momentum and concentration gradients.
An expansion ratio of five was used in the wall normal
direction such that the edge lengths of the centre cells were
five times that of the near-wall cell widths. Mesh resolutions
are listed in Table 1 alongside the results of the mesh
convergence analysis.
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Figure 1: Schematic of a single ripple showing the height 2A and length λ,
along with a description of the coordinate system. The particle-laden fluid is
flowing from left to right across the ripple, and the velocity profile shown is
applied far upstream of the ripple.

2.1.2. Couette flow

The experimental test rig [32, 33] recirculated fluid
containing a dilute suspension of silica nanoparticles through a
system of pipes. Silica deposition was observed along a
straight pipe section of length L = 1 m and diameter
D = 15 mm. The spatial size of the silica ripples had a height
of h < 50 µm which is significantly smaller than that of the
pipe diameter. The region of interest for this paper is the
deposited silica scale which gradually accumulates over time.
Therefore a computational subdomain surrounding a ripple
was established to avoid unnecessary computations of the far
field flow. We assumed that the effect of the evolving ripple
had a negligible impact on the bulk flow in the pipe: the
blockage ratio is on the order of less than 0.7 %.

The subdomain had a length of L+sub = 50 and height
H+sub = 10. The length was chosen such that the flow upstream
and downstream of the ripple developed prior to entering or
exiting the domain respectively. The flow simulations around
the micron sized ripples occur in the laminar viscous sublayer
of the turbulent pipe flow and therefore the approximation of
modelling this case as Couette flow is valid for up to y+ ≈ 10.
Further details on assumptions and reasoning are provided in
Section 2.2.2.

The initial profile of the single bump on the lower boundary
was applied as a sinusoidal shape with

y+ = A + A cos(kx+) for −
λ

2
< x+ <

λ

2
(4)

where A = 0.25 is the amplitude and k = 2π/λ the
wavenumber with λ = 2.5 the wavelength of the sinusoid, as
shown in Figure 1. The bump had an initial maximum height
of h+0 = 2A and length l+0 = λ as shown in Figure 2b; giving an
aspect ratio of l+0 /h

+
0 = 5. For the surface roughness model

with five bumps, this equation was also applied but with the
streamwise limits of x+ ± 5λ/2.

Similar to the Poiseuille flow case, the Couette flow mesh
was a structured Cartesian grid with uniform cell spacings in the
streamwise direction, but only a bias toward the lower boundary
in the wall normal direction (with an expansion ratio of ten).
Mesh convergence for the Couette flow case was achieved as
shown in Figure 5 and a close-up of the mesh near the lower
boundary is shown in Figure 2a.
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Figure 2: Close-up snapshots of the computational mesh for the simulation
of a single evolving bump in the laminar viscous sublayer at: (a) the initially
generated mesh; (b) t+ = 0; (c) t+ = 5∆t+; and (d) t+ = 10∆t+ where ∆t+ =
2500.

2.2. Fluid description
The Navier-Stokes equations with the ALE formulation [26,

28] were used to model the fluid motion in the simulations and
included the effect from the evolving boundary. The fluid was
assumed Newtonian and laminar. The ALE momentum equa-
tion for an arbitrary control volume V with surface S with these
assumptions is

d
dt

∫
V
ρu dV +

∫
S
ρu(u − uS ) · n̂ dS = −

∫
V
∇p dV

+

∫
S
µ(∇u + (∇u)T ) · n̂ dS

(5)

where u is the fluid velocity, uS the surface velocity of the con-
trol volume, p the pressure, µ the dynamic viscosity and n̂ the
unit normal vector pointed outward from the boundary. Simi-
larly, the continuity equation is

d
dt

∫
V
ρ dV +

∫
S
ρ(u − uS ) · n̂ dS = 0 (6)

The ALE formulation of the Navier-Stokes equations were
employed in the simulations using the dynamic mesh model of
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Fluent to ensure that the effect on the fluid due to the motion of
the moving boundary was included. Although, because the
ratio of the depositing silica velocity with the fluid velocity
was approximately O(10−6), the motion of the accumulating
silica deposit on the pipe wall had a negligible impact on the
flow. Furthermore, the flow field was practically in steady state
because the flow was steady for each mesh step, and the
evolving fluid-silica interface moved at a significantly slower
rate compared to the pipe flow. Lastly, the fluid was assumed
to be incompressible. Therefore, the governing equations can
effectively be expressed in their Eulerian forms for each mesh
step, with the momentum equation

ρ(u · ∇u) = −∇p + µ∇ · (∇u + (∇u)T) (7)

and the continuity equation

∇ · u = 0 (8)

A cell-centred finite volume method was employed for
solving the transport equations of the fluid phase. Pressure and
velocity were coupled with the algorithm SIMPLE:
semi-implicit method for pressure-linked equations [36], in-
volving an iterative process. The spatial discretisation scheme
used for the gradients was least squares cell based, pressure
was second-order upwind and momentum third-order MUSCL:
monotonic upstream-centred scheme for conservation laws
[37]. Under-relaxation factors for pressure and momentum
were used with values of 0.3 and 0.7 respectively. All flow
field values were initialised with the inlet boundary condition.

The geometry changed over time in the Couette flow cases
as the fluid-silica interface evolved. The flow field was treated
as steady state for each discrete step of the mesh deformation
process. However, evolution of the interface occurred over
time and thus the model was in a pseudo steady state. The
transient solver in Fluent was employed such that each simu-
lated time step corresponded to a discrete mesh step; allowing
the complete interface evolution to be run as one simulation.
Steady state for each discrete mesh update was achieved by
setting an arbitrarily large time step. This approach was
verified by comparing results from the steady state solver and
the transient solver with this very large time step.

2.2.1. Poiseuille flow boundary conditions
No slip conditions were applied to the upper and lower

boundaries. Symmetry was applied on the front and back
boundaries: forcing the 2-D assumption. A uniform inlet
velocity uinlet was applied on the upstream boundary (the
Poiseuille velocity profile was fully developed after the
entrance region) and a pressure outlet on the downstream
boundary.

2.2.2. Couette flow boundary conditions
A no slip condition was also applied on the lower boundary in

the pipe flow configuration: the fluid-silica interface. Similar to
the Poiseuille case, a symmetry condition was imposed on the
front and back boundaries, and a pressure outlet was applied
on the downstream boundary. A velocity inlet condition was

used for the upstream boundary with a linear velocity profile
following

u = u∗y+ ı̂ (9)

where ı̂ is the unit normal vector in the streamwise direction.
The top boundary, approximately representing the edge of

the laminar viscous sublayer, had a no slip condition applied
with a moving wall motion of this velocity.

The viscous sublayer rises as the silica accumulates and
shifts the interface as shown in Figure 2c. Consequently, the y+

value was offset by the far field bed height. This tracking of
the sublayer as the bed rises assumes that this sublayer remains
consistent throughout the simulation and has a negligible effect
on the bulk pipe flow; the ratio of this sublayer and the pipe
diameter was O(10−4).

2.3. Particle phase
Particles were tracked in the Eulerian reference frame as a

dilute mixture (no particle-particle interactions) with negligible
inertial effects (colloidal size) and in steady state. Fick’s law
of diffusion is applicable to the colloidal particles of interest
in this paper, and a common transport equation [38] for these
conditions is the convection-diffusion equation

∇ · (c+u − DB∇c+) = 0 (10)

where DB is the Brownian diffusion, c+ = c/cbulk the
dimensionless particle concentration with c the particle
concentration and cbulk the bulk particle concentration.
Brownian diffusion is defined as

DB =
kBT

3πµdp
(11)

where kB = 1.38 × 10−23 J/K is the Boltzmann constant, T =
295.15 K the temperature and dp the particle diameter.

The transport equation for the particle phase (Equation 10)
was also discretised with the finite volume method using a
third-order MUSCL algorithm, and the initial dimensionless
concentration of the field was c+0 = 0.

Particle relaxation time τp is a measure of their response to
the surrounding fluid and is defined in the Stokes regime as

τp =
ρpdp

2

18µ
(12)

where ρp is the particle density. The mechanisms responsible
for particle transport are typically characterised by using a
dimensionless form of this particle relaxation time, τ+p ,
non-dimensionalised like t+.

The dimensionless rate of deposition of particles on a surface
is defined as

u+d =
j

cbulku∗
(13)

where j is the particle flux at the boundary and is evaluated with

j = DB
dc
dn

(14)
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where the concentration gradient is taken in the normal direc-
tion to the lower plate (Poiseuille flow) or local fluid-silica in-
terface (Couette flow) boundary.

2.3.1. Poiseuille flow particle boundary conditions
Boundary values for the particle phase were c+ = 0 on the

two parallel plates (perfect-sink model [35]) and c+ = 1 at the
inlet. The entrance region of the domain upstream of the two
plates, where the flow field develops, also had c+ = 1 imposed
such that the dimensionless particle concentration at the start
of the plates was set at unity. The outlet boundary had a zero
diffusive particle flux applied (dc+/dn+ = 0).

2.3.2. Couette flow particle boundary conditions
Similar to the Poiseuille flow, the lower boundary

(fluid-silica interface) was c+ = 0, whereas the upper boundary
(edge of the viscous sublayer) had c+ = 1 as the bulk of the
pipe flow was approximately uniform. The outlet boundary
had a zero diffusive particle flux applied (dc+/dn+ = 0).

The inlet particle concentration profile was obtained by first
simulating the full test pipe length of L = 1 m with an inlet
concentration of c+ = 1. A slice of the concentration profile at
x = 0.5 m was then extracted and applied to the short
subdomain; linearly interpolating from the profile points to the
subdomain mesh.

2.4. Deforming mesh

The mesh was deformed in the Couette flow cases. Gradual
accumulation of material on the wall surfaces were due to the
silica particle deposition. The multiphase mixture of water and
silica particles were in kinetic equilibrium such that the chem-
ical reaction rates at the interface were quick compared to the
flow time; growth of the silica deposit was mass transfer con-
trolled.

The deposition rate of these silica colloids can be related to
the particle concentration in the Eulerian reference frame by
calculating the concentration gradient at the boundary. The
interface velocity of the accumulating boundary is given by
Fick’s law for the solute concentration field, analogous to the
case of dissolution [39], as

vn = DB
dc+

dn
n̂ (15)

where n̂ is the unit normal pointed towards the fluid domain.
The computational nodes on the lower boundary (deforming

fluid-silica interface) were displaced with

∆x = ∆tvn (16)

where ∆t is the time step between mesh updates.
The remaining boundaries (on the inlet, outlet and upper

sides) were marched upwards such that the computational
domain tracked with the evolving silica bed. These nodes were
marched by offsetting their positions by the displacement of
the left-most interface boundary node (representative of the far
field silica bed height).

The motion of the interior nodes were governed by a linearly
elastic solid model. Mesh motion was governed by

∇ · σ(m) = 0 (17)

where σ is the stress tensor and m the mesh displacement vec-
tor,

σ(m) = Etr(ϵ(m))I + 2Gϵ(m) (18)

where ϵ is the strain tensor, G the shear modulus and E the
Young’s modulus,

ϵ(m) =
1
2

(∇m + (∇m)T) (19)

The solution of Equations 17 to 19 depends only on the ratio
of G and E and this ratio was parameterised with Poisson’s ratio

Po =
1

2(1 +G/E)
(20)

These mesh deformation equations were employed by
enabling the smoothing method of the dynamic mesh model in
Fluent. Deposition, and consequently the deforming boundary,
is a function of the concentration gradient (Equation 15) and
therefore the concentration boundary layer must be converged
throughout the evolving simulation. A Poisson’s ratio of
Po = 0 was chosen as this value provided the best mesh
evolution considering that a constant resolution of the
concentration gradient in the boundary layer was ideal.

2.5. Node shuffle algorithm
Finite volume cells were both modified and translated

throughout the simulations as the moving boundary deformed
non-uniformly around the evolving ripples. This mesh
transformation alters the node positions on the walls and the
node to node distances would become non-uniform, causing
the mesh quality to deteriorate.

A node shuffle algorithm [30] was employed to preserve the
mesh quality by uniformly distributing the nodes along the
perimeter of the moving silica boundary. A similar code was
used for implementing this algorithm in the current
simulations, with a shuffling factor of ξ = 0.025 (a parameter
which restricts the distance that a node can be shuffled
between adjacent nodes). However, instead of anchoring a
node at the stagnation point (as in the eroding cylinder
geometry [30]), the two end nodes of the lower boundary were
fixed in the horizontal direction (constant x+).

The node shuffle was applied after calculating the new node
positions (from Equation 16), with a user-defined function, and
before deforming the mesh with the linearly elastic solid model
(Equations 17 to 19).

2.6. Mesh quality
The quality of the mesh was important to first obtain from

its initial generation and then retain throughout the simulation
where deformations due to the moving boundaries affected the
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mesh quality. A key metric for assessing this mesh quality is
the skewness of the finite volume cells, which can be expressed
as

Cell skewness = max
|θinterior −

π
2 |

π
2

(21)

where θinterior is the interior angle of each corner of a cell.
The skewness of cells should normally not exceed 0.85 to

avoid erroneous results, values of 0.5 − 0.8 are generally
acceptable and a mesh with a maximum cell skewness in the
range of 0.8 − 0.95 is typically regarded as poor.

Cell skewness of the initial generated mesh is zero as all cells
are rectangular cuboid (Figure 2a). Skewness in cells increase
as they twist and deform in accordance to the evolving fluid-
silica interface boundary.

Another consideration for the mesh quality is the local
variations in cell volumes between finite volumes. Cell
volumes gradually reduce closer to the boundary where the
momentum and concentration boundary layers are resolved.
This gradual reduction in cell volumes near the boundary is
mostly preserved throughout the mesh deformations as shown
in Figure 2.

3. Results

First, we validate the approach of modelling colloidal parti-
cle deposition using an Eulerian model by comparing results
with an existing experiment of polystyrene particle deposition
in Poiseuille flow [34]. The two primary cases were investi-
gated with the evolution of a pipe surface contracting due to
silica particle deposition: (1) with an initial sinusoidal-shaped
bump; and (2) with a series of five bumps forming a quintuplet.

3.1. Validation of Eulerian deposition model
The deposition model used in the simulations was first

validated against an analytical solution of particle deposition
between parallel plates. We compared our results against
experimental data [34] where a dilute concentration of
monodispersed polystyrene particles were immersed within
water and deposited onto a plate in a parallel plate flow cell.
The inlet velocity was uinlet = 2.19 mm/s and the water
properties were evaluated at T = 20 ◦C yielding a Re = 1.31.
The particles had a diameter of dp = 783 nm with a density of
ρp = 1050 kg/m3.

The Smoluchowski-Levich approximation uses the analyti-
cal solution to the convection-diffusion equation under steady
flow. This approximation assumes that the hydrodynamic and
van der Waals interactions between the particles and wall are
counterbalanced, that particles follow fluid streamlines and
ignores particle deposition due to interception [35]. The
corresponding particle flux on the plate is

jSL(x) =
DBcbulk

Γ( 4
3 )rp

(
2bPe

9x

)1/3

(22)

where rp is the particle radius, x the distance from the entrance
in the streamwise direction and Pe the Peclet number.
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Figure 3: Iterative convergence of concentration gradient at several points
equidistant along the plate, in the streamwise direction, for Mesh 232 × 50.

The Peclet number for parallel plate flow is defined as

Pe =
3umeanrp

3

2b2DB
(23)

where umean = uinlet is the mean velocity of the flow between
the plates.

The corresponding dimensionless deposition velocity for the
Smoluchowski-Levich approximation is

u+SL =
jSL

cbulku∗
(24)

The critical parameter to accurately capture was the concen-
tration gradient and this parameter was converged for each run.
Figure 3 shows that the concentration gradient converged after
≈ 125 iterations for several points along the plate.

A gradual decline of wall normal concentration gradient,
and consequently particle deposition, along the length of the
plate was found and is shown in Figure 3 (demonstrated by the
non-uniform spacings between the converged concentration
gradients of the equally spaced points along the plate). This
non-linear relationship of j(x+) follows a 1/3 power law as
predicted from the Smoluchwoski-Levich approximation in
Equation 22. The reduction in particle flux along the plate is a
result of the perfect sink model applied to the wall boundaries
such that the bulk concentration gradually reduces from cbulk
(inlet concentration) in the streamwise direction.

Mesh convergence was obtained by refining the
computational mesh and a summary of the results are shown in
Table 1. The number of cells in the streamwise direction had a
small impact on the flow field solution as the flow was
unidirectional and fully developed within the primary region
where deposition occurred (after the developing region near
the entrance and before the exit effects). Increasing the number
of cells in the wall normal direction had a greater influence on
the accuracy of the concentration field as the flow had a
non-zero gradient normal to the wall. Particle flux j on the
walls was calculated from the local concentration gradient
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Figure 4: Dimensionless polystyrene particle deposition velocities between
smooth parallel plates (at x/L = 0.5 with L = 0.076 m), without obstructions,
for a range of diameters (increases from left to right).

(Equation 14) and therefore resolving the concentration
boundary layer was crucial for obtaining accurate results. The
simulations were within 0.3 % of the analytical solution for the
two most refined meshes as shown in Table 1.

A parametric study of the dimensionless particle relaxation
time τ+p was performed with a range of particle diameters from
dp = 10 nm to 3 µm. The simulation results closely matched
the analytical solution of the Smoluchowski-Levich approxi-
mation across the entire range of τ+p as shown in Figure 4.
Particle deposition u+d was greater for smaller particles (small
τ+p) than larger particles (large τ+p) because Brownian diffusion
is inversely proportional to particle size dp (Equation 11).

Gravitational effects are significant for relatively large parti-
cles and a settling velocity can be evaluated with

us =
(ρp − ρ)gdp

2

18µ
(25)

where g is the acceleration due to gravity which acted
downwards onto the plate. The settling velocity is also
non-dimensionalised for comparison with u+d using the shear
velocity such that u+s = us/u∗. The total rate of deposition is a
combination of all the transport mechanisms and u+s can either
enhance or reduce u+d but the deposition velocity is bounded by
u+d ⩾ 0. The contribution of u+s is positive when ρp > ρ
(enhancing deposition; gravity dominated) and negative when
ρp < ρ (reducing deposition; buoyancy driven).

The u+s is negligible for small particles (small particle mass
mp) and significant for large particles (large mp), following a
square power law on dp (Equation 25). Both the
Smoluchowski-Levich approximation and our simulations
ignored gravitational effects, and we assume that these effects
are negligible for the τ+p range of interest.

A range of u+d was measured in the experiments [34] as
shown in Figure 4. The interaction between the particles and
wall was adjusted between their runs by changing the pH and
ionic strength of solution, altering the zeta potentials of the

surfaces and subsequently the deposition efficiency.
Deposition under favourable conditions gave the highest u+d
and deposition was greatly reduced for unfavourable
particle-wall interaction conditions. These near-wall
interactions were not included in our simulations.

The Smoluchowski-Levich approximation and our
simulation underestimated the maximum deposition rate from
the experiment [34] by 22 % which was partway between u+SL
and u+SL + u+s , indicating that gravity played a role in the
deposition process of these polystyrene particles. However, the
total u+d is not a linear superposition of the components u+SL and
u+s . Instead, the inertia of particles and their velocity history is
important for accurately modelling both gravity and Brownian
diffusion simultaneously.

Our primary simulations are exclusively in the diffusion
dominated transport regime where it is well established [38]
that modelling only the Brownian diffusion is sufficient for
accurate results.

3.2. Laminar subdomain from turbulent pipe flow
As mentioned in Section 2.1.2 of the methods, a laminar

subdomain was created for modelling the pipe flow on the spa-
tial scale of the silica ripples. The Reynolds number, based on
the pipe diameter, was Re = 28 000 using a dynamic viscosity
of µ = 1.003 × 10−3 kg/m s and density ρ = 998.2 kg/m3;
yielding a kinematic viscosity of ν = 1.005 × 10−6 m2/s.

The bulk of the pipe flow was in the turbulence flow regime;
however, our deforming mesh simulations were restricted to the
laminar viscous sublayer. A preliminary simulation including
turbulence with the k − ϵ turbulence model was undertaken to
establish the fluid velocity and particle concentration profiles
across the complete pipe geometry. The wall shear stress on this
smooth pipe surface, without any protrusions, was τw,smooth =

10.5 Pa; yielding a friction velocity of u∗ =
√
τw,smooth/ρ =

0.102 m/s.
The colloidal silica particles had a monodispersed diameter

of dp = 21 nm; yielding a relatively low Brownian diffusion
value of DB = 2.05 × 10−11 m2/s. The silica particles had a
density of ρp = 1500 kg/m3; yielding a dimensionless particle
relaxation factor of τ+p = 3.83 × 10−7.

The concentration boundary layer at the centre of the
full-length subdomain (L = 1 m) is shown in Figure 5 for
several mesh resolutions to demonstrate mesh convergence.
This concentration profile was then applied to the short
subdomain (L+sub = 50) as a boundary condition for the
evolving mesh simulations.

The silica deposition velocity (Equation 15) of the smooth
surface was ud,smooth = 1.1 × 10−6 m/s, whereas the settling
velocity (Equation 25) was us = 1.2 × 10−10 m/s. The small
contribution of deposition from settling compared to Brownian
diffusion, with us/ud,smooth = O(10−4), along with the small
particle relaxation τp, supports the assumption of neglecting
inertial effects of the particles. Furthermore, speed of the silica
deposition compared to the bulk flow was negligible
(ud,smooth/ubulk = O(10−6)) such that the exchange of mass
from the fluid to the surface had a negligible impact on the
mass fraction of silica in the bulk flow.
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Figure 5: Dimensionless particle concentration c+ within the full-length lami-
nar subdomain for the pipe flow (at x/L = 0.5 with L = 1 m) with several mesh
resolutions. The bulk of the pipe flow was turbulent with a Reynolds number
of Re = 28 000, and particles had a diameter of dp = 21 nm.

3.3. Single ripple

Simulations of the single ripple case were undertaken until
the mesh quality degraded from its initially high quality state;
ten mesh deformation time steps were simulated with
∆t+ = 2500 yielding a final time of t+f = 25 000. The solver
continued to model the evolving boundary for many time steps
after those reported in this paper, however the increasing
skewness of cells degraded the accuracy of the solution.
Pathlines, dimensionless particle concentration and cell
skewness for all time steps, including the transformation from
the initially generated mesh to the sinusoidal protrusion, are
shown in Video 1 of the supplementary material.

The developing flow field is shown with pathlines in
Figure 6; illustrating an approximately symmetrical flow field
about the ripple centre at x+ = 0. Fluid remained attached to
the lower boundary wall without shear separation. The silica
bed height upstream of the ripple matched the height of the sil-
ica downstream of the ripple, showing that the influence of the
ripple on particle deposition was localised at the protrusion.

The highest fluid velocity was found at the crest of the ripple
(closely spaced pathlines) and the lowest velocity in the troughs
of the ripple (sparsely spaced pathlines). This trend is similar
to the local growth rate of the silica bed height: highest growth
at the crest and lowest growth in the troughs.

The assumption of ignoring the reduction in particle
concentration along the plate due to particle deposition is
supported by the fact that the particles were primarily
transported out of the domain; and only a small fraction,
O(10−8), of the silica deposited onto the pipe wall.

Concentration of silica c+ within the flow field at the end
of the simulation is shown in Figure 7. The nodes are equally
spaced along the lower boundary as enforced from the node
shuffle algorithm (Section 2.5). Interior nodes were displaced
with the linearly elastic solid model (Section 2.4) which led to
a low cell skewness as the mesh absorbed the deformation of
the boundary.
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Figure 6: Pathlines around a growing silica ripple at: (a) t+ = 0; (b); t+ =
12 500 and (c) t+ = 25 000 with ∆t+ = 2500. Flow is from left to right. The
bottom solid line outlines the lower boundary of the computational domain: the
deposited silica layer. Starting positions of the pathlines are equally spaced in
the vertical direction and are offset by the far field bed height.

Heights of the cells near the moving fluid-silica interface re-
main relatively uniform across the entire length of the domain
including along the ripple (Figure 7). Node spacings normal to
this moving boundary were stretched at the troughs (x+ ≈ ±1)
and compressed at the crest (x+ ≈ 0); which indirectly
correspond to larger and smaller boundary layers respectively.
Consequently, the resolution of the concentration boundary
layer was retained along the moving boundary providing a
consistent degree of accuracy for the solution. Furthermore,
this boundary layer resolution was preserved throughout the
mesh deformation steps over time as shown in Figure 2.

Mesh convergence was quantified by comparing profile
evolutions among a number of grid resolutions by varying the
number of streamwise and wall normal cells. Convergence of
the mesh was achieved for the 1000 × 40 grid and this mesh
was used in both the single ripple and multiple ripple (surface
roughness model) cases.

Cell skewness of the mesh was evaluated with Equation 21
and the maximum skewness for the mesh resolutions
investigated are shown in Figure 8. The mesh quality remains
at a good level after several mesh deformation steps with the
maximum cell skewness below 0.44 for all grids. There
appears to be no trend of skewness with the number of
streamwise cells e1, but the mesh quality improves with
increasing the number of wall normal cells e2.

All of the simulations with a deforming mesh utilised the
node shuffle algorithm outlined in Section 2.5. This algorithm
evenly distributed the nodes on the boundary and had a
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grid resolutions (streamwise × wall normal) at t+ = 5∆t+ where ∆t+ = 5200
(after five mesh deformation steps).

significant positive influence on the mesh quality. For
comparison, without the node shuffle a maximum cell
skewness of 0.77 was found for the 1000 × 40 grid, compared
with 0.40 while using the algorithm (Figure 8).

The time evolution of the rising silica bed height is shown in
Figure 9a; from the initially prescribed sinusoidal profile to the
final raised boundary profile. In addition to the matching bed
height upstream and downstream of the ripple, as commented
above, the deposition rate far from the ripple remains constant
over time.

Particle deposition rate, and consequently the fluid-silica in-
terface velocity, is directly related to the concentration gradient
and Figure 9b corresponds to this deposition rate. This gradi-
ent dc+/dn+ highlights where the bed height was currently ris-
ing over time. The deposition rate at the troughs of the ripple
significantly decreased over time towards zero whereas the de-
position rate at the crest increased.

Consider a rate of silica deposition around the ripple, ṁ, as a

function of the area under dc+/dn+ such that

ṁ =
∫ 3

−3
DB

dc+

dn+
dx+ (26)

which was calculated with numerical integration (by evaluating
the curves in Figure 9b with cubic splines). The integration
limits on x+ are arbitrary, and were chosen as x+ = −3 and
x+ = 3 because dc+/dn+ was relatively constant outside of this
range. This value ṁ can be normalised with the rate of silica
deposited in the absence of the bump

ṁsmooth =

∫ 3

−3
DB

dc+

dn+

⏐⏐⏐⏐⏐
far field

dx+ (27)

where dc+/dn+|far field = 0.532 was taken as the far field
concentration gradient found both upstream and downstream
of the bump. The normalised rate of silica deposition
ṁ/ṁsmooth provides a quantitative comparison of the silica
deposition over time as the ripple transforms its shape.

Initially ṁ/ṁsmooth = 0.98 which is near unity indicating that
the prescribed sinusoidal bump had a negligible effect on the
overall deposition rate. However, ṁ/ṁsmooth decreases over
time with an approximately linear relationship and the final ra-
tio at the end of the simulation was ṁ/ṁsmooth = 0.78; showing
that fewer particles deposited along the deformed ripple when
compared to both the initial bump and the smooth surface.

The magnitude of wall shear stress |τw| had its global
maximum value at the crest of the bump for all time steps as
shown in Figure 9c, and had local minima in the troughs:
consistent results with the pathline spacings (Figure 6). The
|τw| is near zero in the troughs of the ripple towards the end of
the simulation, suggesting that the laminar shear layer was on
the verge of detaching; and subsequently the flow field was
near recirculation in these regions. The relative pressure along
the boundary is shown in Figure 9d where a positive p was
found on the upstream face and a negative p was found on the
downstream face of the ripple for all time steps.
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Figure 9: Evolution of colloidal silica deposition on an initial bump within
the laminar viscous sublayer of turbulent pipe flow at Re = 28 000. Time-
dependent variables shown at the fluid-silica interface are: (a) height of sil-
ica deposition, (b) dimensionless particle concentration gradient, (c) wall shear
stress and (d) relative pressure.

3.4. Surface roughness model

Microscopic surface roughness was analysed by simulating
a series of sinusoidal protrusions in the Couette flow domain.
The same mesh and number of time steps with ∆t+ = 2500
(t+f = 25 000) were undertaken to allow a direct comparison
with the single ripple case. Pathlines, dimensionless particle
concentration and cell skewness for all time steps, including
the transformation from the initially generated mesh to the
sinusoidally-shaped surface roughness, are shown in Video 2
of the supplementary material.

The flow field surrounding the block of ripples (upstream of
the first and downstream of the last ripple centre), as shown in
Figure 10, closely matches the flow for the single ripple case
(Figure 6). The flow dynamics within the set of ripples had a
minor effect outside of this set. Similarly, the flow in the
troughs between each crest (x+ ≈ 0,±2 1

2 ,±5) appears
consistent across these four repeating unit blocks.

Tracer particle trajectories (represented with pathlines in
Figure 10) veer closer to crests than troughs, leading to greater
deposition in the crests compared to the troughs. The pathlines
deviate further from the troughs over time as the crests extend

further from their origins; almost no colloidal silica particles
reach these growing valleys to deposit.

Cell skewness of the quintuplet ripple mesh progressively
deteriorated as the fluid-silica interface deformed. The cell
skewness of the upper fifth percentile of cells are shown in
Figure 11 for all depositing silica time steps, and the worst
affected cells were located near the crests of the outer most
ripples. The high level of maximum cell skewness experienced
in the later time steps of this simulation adversely affected the
accuracy that the finite volume solver could obtain. However,
this data has been included in our results to illustrate the
importance of mesh quality for evolving boundary problems
with significant profile transformations.

The cumulative distribution of cell skewness for the single
ripple case had a similar profile and followed the same trend as
the quintuplet case but had a final maximum cell skewness of
0.40, compared with 0.84. The first layer of cells on the central
ripple had similar skewness between the two cases and the
skewness of cells increased sequentially for each ripple
outwards in the quintuplet case. The linearly elastic mesh
deformation model tended to cause cell skewness surrounding
the deforming ripples (as shown in Figure 7) and this trend
compounded for the outer ripples in the surface roughness
model.

The evolution of the time-dependent variables for the quintu-
plet case, as shown in Figure 12, has similarity to the single rip-
ple (Figure 9) on the upwind face of the first and on the wake
side of the last ripples. This small influence of the flow dynam-
ics across the interior ripples on the outer faces was introduced
above in describing the pathlines. Silica protrusions effectively
shielded the valleys from particles within the fluid and the bed
height in these regions remained relatively stagnant over time.

Irregularities in the concentration gradient profile on the
outer ripples, as shown in Figure 12b, in the final two to three
time steps could be attributed to the high cell skewness in these
regions. Typically, the accuracy of flow field variables in
highly skewed cells are compromised, and the most skewed
cells were found in the critical region of the first layer of cells
above the fluid-silica interface. Furthermore, the accuracy of
strong flow gradients is highly sensitive to cell skewness and
the concentration gradient is the driving mechanism of the
deforming fluid-silica interface.

The deposited silica rate for the surface roughness model
also decreased with a linear relationship in time, with an initial
ṁ/ṁsmooth = 0.96 reaching ṁ/ṁsmooth = 0.80 at t+ = 5∆t+. The
integration limits for this case were chosen as x+ = −7 and
x+ = 7. The ratio ṁ/ṁsmooth then deviated from this trend for
the second half of the simulation (12 500 < t+ ⩽ 25 000) by
increasing to approximately unity; this discrepancy was likely
due to the increasing particle deposition in the valleys during
the later time steps.

Flow separation occurred in the valleys between ripples for
the last few time steps as shown by the wall shear stress
distribution in Figure 12c; yielding a recirculation region
within the troughs as illustrated with pathlines in Figure 13.
The shear experienced at the interface on each ripple appear
similar among the interior ripples, suggesting that the flow
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Figure 11: Empirical cumulative distribution function of cell skewness for the
quintuplet of silica ripples case. The shade of the lines relate to dimensionless
time and are as in Figure 9.

field established the same developed profile on each crest;
which follows intuition for a steady laminar flow over a
repeating geometric profile. Relative pressure decreases
sequentially along each ripple, with local rise and falls for each
ripple, as shown in Figure 12d.

4. Discussion

4.1. Colloidal silica deposition

A constant in time, and near uniform in the streamwise
direction, rate of silica deposition was calculated for the
smooth boundary cases in both the Poiseuille and Couette flow
configurations; matching both theory [35] and experiment

[34]. This relation held true because the flow was developed
and in steady state (laminar flow between parallel plates,
without obstructions). The same relation of silica deposition
was found downstream of the protrusions after the flow
redeveloped from being disturbed by the silica ripples.

The total rate of particle deposition across both the single
ripple and surface roughness model geometries were lower
than for the smooth surface at all time steps and reduced to
ṁ/ṁsmooth ≈ 0.8 by the end of the simulations: the
morphodynamics of the silica bed naturally reduced the
deposition rate for both rough boundaries investigated. This
result suggests that the optimal surface for colloidal particle
deposition under steady laminar conditions is smooth rather
than rough (where the rough boundary would have a greater
surface area at the fluid-silica interface).

The silica ripples were non-self-stabilising: protrusions
from the fluid-silica interface would grow faster than the
valleys and far field smooth wall region. The opposite
phenomenon was found for the boundary evolution of an
eroding cylinder [30] where protrusions on the deforming
boundary would erode quicker than their smooth counterparts.
This non-self-stabilising effect on the surface means that if any
protrusion developed, due to a numerical artefact or otherwise,
it would continue to grow for the remainder of the simulation.

The quickest growth of the silica bed was found in regions
of an existing protrusion and this trend correlates well with
what was observed from experiments [33] where mounds of
silica developed. The loosely structured silica ripples, aligned
normal to the direction of pipe flow (circumferential), were
observed in the downstream region of the test section where
the boundary layer was fully developed. Silica deposition
patterns upstream, closer to the entrance, had more chaotic
features and the particles were possibly transported by
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Figure 13: Close-up of pathlines for the quintuplet of silica ripples at t+ =
25 000 (Figure 10), with additional pathlines starting within the recirculation
region.

turbulent diffusion near the wall.

4.2. Non-ideal particle deposition

Dimensionless deposition velocity of the silica in the
smooth pipe flow was u+d,smooth = 1.1 × 10−5. Experiments
under similar flow conditions and particle properties observed
u+d ≈ O(10−8) [33]: three orders of magnitude lower than what
the Smoluchowski-Levich approximation predicted and what
we calculated from our simulations. One hypothesis for this
discrepancy between theory and experiment is that the surface

roughness of the carbon steel pipes influences the deposition
rate: we found that microscopic surface roughness of the form
of sinusoidal ripples reduced the colloidal deposition rate by
20 %.

Physicochemical properties of colloidal silica particles influ-
ence their deposition rate. In particular, the interaction energy
between colloidal particles and a wall (combination of van der
Waals and electrostatic interactions: see DLVO theory [35])
may or may not perpetuate an energy barrier between the two
surfaces [40]. These interactions are only significant when the
particle is very close to the wall: on the order of nanometres.

Variables including the temperature, pH and concentration
of dissolved minerals within the geothermal fluid affect the
rate of silica precipitation and the stability of colloidal silica
particles [41]. The probability of a colloid attaching to a
surface by forming a bond is inversely proportional to this
stability. Stability of the silica colloids were measured experi-
mentally and were found to be significantly more stable than
theory [41]; indicating a much lower attachment probability.
Furthermore, particles may reflect or detach from the wall after
impact, reducing the net amount of silica deposition.

These factors leading to a lower effective deposition rate are
challenging to accurately and reliably model a priori, and
therefore we focused our simulations in this paper on the
hydrodynamic particle transport and boundary evolution of the
rough pipe surface. Assuming a consistent deposition
probability across the fluid-silica interface, enables an accurate
qualitative description of the rough silica bed evolution.
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4.3. Self-similarity of a single ripple
The growth rate of the single ripple was analysed to

determine if the evolution was self-similar. A dimensionless
height ∆y+ was defined as the wall normal distance between
the peak and the mean height of the two adjacent troughs
y+troughs. Similarly, the dimensionless width ∆x+ was defined as
the distance between the two troughs in the streamwise
direction. The location of extrema were calculated by
interpolating mesh nodes using cubic splines. These distances
were then scaled by their initial values, ∆y+0 = 2A and ∆x+0 = λ
respectively, to define expansion ratios which are shown over
time in Figure 14. As the troughs were absent in the initially
prescribed sinusoidal profile, an initial width of the ripple
wavelength was used instead.

The height expansion ratio ∆y+/∆y+0 increased over time as
the silica bump grew. This ratio closely followed an exponential
relation in time, with

∆y+

∆y+0
= exp (2.57 × 10−5t+) (28)

throughout the entire simulation.
In contrast, the width expansion ratio ∆x+/∆x+0 of the silica

ripple decreased for all time steps: the ripple narrowed over
time. However, the rate of narrowing for the ripple was much
smaller than the growth rate in the wall normal direction. This
width expansion ratio approximately followed a power law
relationship in time, with

∆x+

∆x+0
= 1.37(t+)−0.0395 (29)

after the initial first couple of mesh deformation steps.
The evolving silica bed height also rose over time with a

mean trough height of y+troughs as shown in Figure 15. The
growth rate of the troughs slowed over time as valleys formed
and the colloidal silica particles veered further from the
boundary (see pathlines in Figure 6). This mean trough height
followed a quadratic relationship in time with

y+troughs = −1.24 × 10−10(t+)2
+ 7.12 × 10−6t+ (30)
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Figure 15: Translation displacements of the mean trough height and centre of
bump for the single ripple case over all time steps.

The crest of the ripple, shown as x+centre in Figure 15, moved
upstream (dx+centre/dt+ < 0) over time: representing a travelling
wave solution. Starting at an initially motionless state, the
peak (and thus ripple) translated with a constant acceleration
throughout the simulation. This streamwise development of
the silica bed generated a slight tilt of the ripple towards the
upstream direction. This front steepening was likely caused by
a non-linear dispersion relationship for the travelling wave
solution. The ripple centre also followed a quadratic
relationship in time with

x+centre = −4.39 × 10−11(t+)2
− 1.67 × 10−6t+ (31)

The following similarity variables are defined based on the
expansion ratios and translation displacements above for the
single ripple case. The positions were translated by aligning
the peak at the origin in the streamwise direction (x+centre) with

x̃+ =
x+ − x+centre

1.37(t+)−0.0395 (32)

and shifting the profiles down in the wall normal direction such
that their mean trough heights intersect y+ = 0 with

ỹ+ =
y+ − y+troughs

exp (2.57 × 10−5t+)
(33)

where x+centre and y+troughs are quadratically dependent on time
t+ with Equations 29 and 30 respectively, and their values are
shown in Figure 15.

The ripple profiles using these similarity variables x̃+ and ỹ+

of each time step are shown superimposed in Figure 16. The
silica bed height outside of the ripple (defined as the shape
between the two local minima) is excluded from this figure.

Profiles of the silica ripple over time collapsed well onto a
single master curve (Figure 16); demonstrating a self-similar
solution. The peak of the transformed profiles followed very
closely with the master curve over time (Equation 4), matching
the initial height y+ = 0.5.
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4.4. Deforming mesh approach

The ALE model is a powerful tool used for deforming mesh
simulations with the distinct advantage of tracking the moving
boundaries explicitly; when compared to the immersed bound-
ary methods where the interface is captured with a model. The
linearly elastic solid model (Section 2.4) used for smoothing
the interior mesh nodes is effective at maintaining mesh
quality for large domain volume changes; we have previously
employed this model for tracking a melting ice front [31]
where the domain size increased by an order of a magnitude.
We have also used a similar smoothing mesh method, based on
a diffusion model, for simulating the evolution of an eroding
cylinder in cross flow [30]; where the eroding cylinder shrunk
by an order of magnitude during the simulation.

Cell skewness is an important metric to quantify the mesh
quality. As the simulations presented in this paper were
dealing with deforming meshes using evolving boundaries, the
mesh quality over the duration of the simulations had to be
monitored. Irregularities in the solution, particularly the wall
normal particle concentration gradient dc+/dn+, were found in
the final time steps of the quintuplet ripple case (Figure 12b) in
regions where the cell skewness was around 0.6 − 0.7 at
x+ ≈ ±5 within the first cell layer as shown in Figure 17.
Similarly, irregularities were also found in the wall shear stress
τw in Figure 12c (directly proportional to the velocity
gradient); whereas this issue was less prevalent in the variables
without gradients (relative pressure p in Figure 12d),
indicating that gradients were poorly calculated in highly
skewed cells. The simulation was then terminated as the
accuracy of the results had degraded.

The adverse effect of cell skewness on the accuracy of par-
ticle deposition was evaluated by imposing a prescribed distor-
tion on the mesh used in the case studied earlier in Section 3.1.
The mesh was distorted with varying degrees by shifting all in-
terior nodes in the streamwise direction with

∆x = Askew sin
(
Nskew

πx
L

)
sin

(
πy
2b

)
(34)

Table 2: Effect of cell skewness on particle deposition flux at the centre of the
non-evolving parallel plate with Nskew = 1.

Askew (mm) Cell skewness j (#/cm2 s) Error (%)

0.0 0.000 301.7
0.1 0.307 301.9 0.07
0.2 0.515 302.0 0.10
0.3 0.639 302.1 0.14
0.4 0.716 302.2 0.19
0.5 0.768 302.5 0.27
1.0 0.880 304.7 1.01
1.5 0.919 308.6 2.28
2.0 0.939 314.0 4.08
2.5 0.952 321.0 6.41
3.0 0.960 329.6 9.25
3.5 0.965 339.7 12.6
4.0 0.970 351.3 16.5

where Askew is the skew amplitude and Nskew the number of half
sinusoids; yielding gradual changes in cell skewness towards a
peak located at the centre of the plate for odd Nskew.

Increasing the cell skewness at the centre of the bottom plate
resulted in higher errors for the local deposition flux as shown
in Table 2. The influence of the mesh distortion on the solution
accuracy was insignificant for cell skewness values less than
approximately 0.7, whereas for a cell skewness above 0.96 the
error was over 10 %.

Skewness in cells is a good indicator for assessing the local
quality of a mesh, although the accuracy of the corresponding
local solution also depends on the global mesh quality and
flow dynamics. For example, with Nskew = 9 an error of 0.53 %
was found for Askew = 0.5 mm yielding the same local cell
skewness of 0.768 as in Table 2; demonstrating the
dependence of solution accuracy on the global mesh quality.
Furthermore, the dependence on flow dynamics is illustrated in
Figure 12 for the case of the silica deposition in the surface
roughness model; non-linear streamlines resulted in a greater
sensitivity to the cell skewness.

The two other evolving boundary simulation papers on a
melting front and an eroding cylinder mentioned above
demonstrated that this deforming mesh approach functions
well in deforming bodies where the moving boundary shifts in
a predominately normal direction. The node shuffle algorithm
(uniformly distributing nodes along the boundary) improved
the mesh quality for changing curvatures (circular to rounded
triangular). However, whilst the node shuffle provided a
uniformly distributed boundary for the surface roughness
model in this paper, the mesh twisted as the ripples evolved (as
shown in Figure 17). The cause of this twisting was the overall
movement of nodes along the fluid-silica interface towards the
centre x+ = 0 as the growing ripples increased the length of
this interface over time. The interior mesh was not deformed
with a requirement of uniformly spaced nodes, whereas this
requirement was imposed on the interface boundary with the
node shuffle algorithm.

Both the linearly elastic solid model and the diffusion based
model for smoothing the interior nodes of the mesh were
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Figure 17: Close-up of cell skewness around the downstream region of the quintuplet of ripples at t+ = 25 000 (final geometry after ten mesh deformation steps).
The finite volume cells are outlined with solid lines. The upstream region (x+ < 0) was the mirror image of this figure including the cell skewness values.

trialled with preliminary simulations, with the former yielding
a higher mesh quality as the mesh evolved. The high cell
skewness near the deforming boundary was the critical
limiting factor of the simulations, and improving the cell
quality would enable the simulations to continue as the
underlying governing models and theory remained valid for
the evolved silica bed profile.

Future work could examine the use of alternative models for
deforming the mesh. Remeshing, a relatively computationally
expensive task, could still be avoided by smoothing the interior
mesh; the general flow characteristics and requirement of
resolving the concentration boundary layer remains consistent
over the silica bed height evolution. A possible alternative
model could include a third step which would reduce skewness
within cells after node shuffling the boundary nodes and
smoothing the interior cells. This step could be achieved by
applying the node shuffle to the layers of cells near the moving
boundary (restricted to structured grids) or by generating a
new algorithm for aligning cell corners with optimal angles
(applicable for both structured and unstructured grids).

5. Conclusion

Colloidal particle deposition of silica was simulated within
the laminar viscous sublayer of turbulent pipe flow with an
evolving boundary. First, the Eulerian approach of modelling
colloidal particle deposition was validated against existing
experiments, and the simulation results also matched closely
with the Smoluchowski-Levich approximation. Then, a
deforming mesh model was used for simulating the evolution
of a rough silica bed surface in pipe flow and was compared
with another set of experiments. We found that silica
deposition was enhanced on crests of the sinusoidal
protrusions with an exponential growth in time. In contrast, the
silica deposition was reduced within the valleys when
compared to the smooth surface case. The discrepancy
between the smooth and rough wall models enlarged as the
protrusions grew, ultimately reducing the overall deposition
efficiency by 20 % over the time simulated.

The initial sinusoidal protrusions imposed on the deforming
fluid-silica interface developed self-similarly over time.
Skewness of the finite volume cells increased as the mesh
evolved and was highly correlated with irregularities in the
solution where the cell skewness reached or exceeded
0.6 − 0.7. The silica ripples accelerated in the upstream
direction as the colloidal particle deposition favoured the
upstream face of each bump; this travelling wave phenomenon
contributed to the skewness of cells.
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